精英家教网 > 高中数学 > 题目详情
从空间一点P向二面角α-l-β的两个半平面α,β分别作垂线PE,PF,垂足分别为E,F,若二面角α-l-β的大小为60°,则<
PF
PE
>的大小为(  )
A、30°或150°
B、120°
C、60°或120°
D、60°
考点:二面角的平面角及求法
专题:空间角
分析:首先,确定<
PF
PE
>就是两个平面α和β的法向量的夹角,然后,利用二面角的平面角和法向量的夹角直接的关系确定即可.
解答: 解:<
PF
PE
>就是两个平面α和β的法向量的夹角,
它与二面角的平面角相等或互补,二面角α-l-β的大小为60°.
故<
PF
PE
>的大小为60°或120°.如图:图一是互补情况,图二,是相等情况.
故选:C.
点评:本题重点考查了平面的法向量、法向量的夹角与平面所成的二面角之间的关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a为实数,f(x)=(x2-4)(x-
1
2

(1)求倒数f′(x);
(2)求f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx-2与抛物线y2=2x相交于A,B两点,O为坐标原点.
(1)若k=1,求证:OA⊥OB;
(2)求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式|x+1|+|x-1|≤4m2+
1
m
对m>0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)的图象如图所示,其中A>0,ω>0,0<φ<π.求:
(1)f(x)的解析式;
(2)f(x)的最大值及f(x)取最大值时x的集合;
(3)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足S7=77,且a1,a3,a11成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=2 an,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某校其中考试后,随机抽查了高一甲、乙两个班各10名学生的数学成绩,其成绩的茎叶图如图所示,那么甲、乙两班这10名学生成绩的中位数z、z与方差s、s之间的关系正确的是(  )
A、z>z,s>s
B、z<z,s>s
C、z>z,s<s
D、z<z,s<s

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学“期末”考试各科成绩都在“期中”考试的基础上提高了2分,则该同学成绩的(  )
A、中位数不变B、极差变大
C、方差不变D、标准差变大

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:x2+2y2=4.则椭圆C的离心率是
 

查看答案和解析>>

同步练习册答案