精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

【答案】
(1)解:设椭圆C的方程为

由题意

解得a2=16,b2=12.

所以椭圆C的方程为


(2)解:设P(x,y)为椭圆上的动点,由于椭圆方程为 ,故﹣4≤x≤4.

因为

所以 =

因为当 最小时,点P恰好落在椭圆的右顶点,

即当x=4m时, 取得最小值.而x∈[﹣4,4],

故有4m≥4,解得m≥1.

又点M在椭圆的长轴上,即﹣4≤m≤4.

故实数m的取值范围是m∈[1,4]


【解析】(Ⅰ)设椭圆C的标准方程,根据焦点坐标和长轴长与短轴长的比联立方程求得a和b,进而可得椭圆的方程.(Ⅱ)设P(x,y)为椭圆上的动点,根据椭圆的性质可判断x的范围.代入 判断因为当 最小时,点P恰好落在椭圆的右顶点,

进而求得m的范围.点M在椭圆的长轴上进而推脱m的最大和最小值.综合可得m的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆经过点 且圆心在直线.

(1)求圆的方程;

(2)过点的直线与圆交于两点,问在直线上是否存在定点使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则下列说法正确的(
A.a∈(2,4),输出的i的值为5
B.a∈(4,5),输出的i的值为5
C.a∈(3,4),输出的i的值为5
D.a∈(2,4),输出的i的值为5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①如果不同直线都平行于平面,则一定不相交;

②如果不同直线都垂直于平面,则一定平行;

③如果平面互相平行,若直线,直线,则

④如果平面互相垂直,且直线也互相垂直,若,则

其中正确的个数为( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为如果存在实数 使得对任意满足恒成立,则称为广义奇函数.

(Ⅰ)设函数,试判断是否为广义奇函数并说明理由;

(Ⅱ)设函数其中常数 证明是广义奇函数,并写出的值

是定义在上的广义奇函数且函数的图象关于直线为常数)对称试判断是否为周期函数若是,求出的一个周期,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆心在直线上的圆经过点,但不经过坐标原点,并且直线与圆相交所得的弦长为4.

(1)求圆的一般方程;

(2)若从点发出的光线经过轴反射,反射光线刚好通过圆的圆心,求反射光线所在的直线方程(用一般式表达).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.

(1)过B作平面BFG∥平面MNC,平面BFG与CD、DM分别交于F、G,求AF与平面MNC所成角的正弦值;
(2)E为直线MN上一点,且平面ADE⊥平面MNC,求 的值.

查看答案和解析>>

同步练习册答案