精英家教网 > 高中数学 > 题目详情
12.如图,在四棱锥S-ABCD中,底面是边长为2的正方形,SA⊥底面ABCD,且SA=2,E为SC的中点,则直线BE与平面ABCD所成角的正弦值为$\frac{\sqrt{3}}{3}$.

分析 连接AC,BD,相交于O,连接EO,则∠EBO是直线BE与平面ABCD所成角,即可得出结论.

解答 解:连接AC,BD,相交于O,连接EO,则EO∥SA,
∵SA⊥底面ABCD,且SA=2,
∴EO⊥底面ABCD,且EO=1,
∴∠EBO是直线BE与平面ABCD所成角,
∵EO=1,BO=$\sqrt{2}$,
∴BE=$\sqrt{3}$,
∴直线BE与平面ABCD所成角的正弦值为$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查线面角,考查线面垂直,正确找出线面角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.化简:
(1)$\overrightarrow{AB}$-$\overrightarrow{AC}$+$\overrightarrow{BD}$-$\overrightarrow{CD}$;
(2)$\overrightarrow{OA}$+$\overrightarrow{OC}$+$\overrightarrow{BO}$+$\overrightarrow{CO}$;
(3)$\overrightarrow{AB}$-$\overrightarrow{CB}$-$\overrightarrow{DC}$+$\overrightarrow{DE}$+$\overrightarrow{FA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各组函数中,表示同一函数的是(  )
A.y=lg(1+x)+lgx,y=lg(x+x2B.y=|x|,y=$\sqrt{{x}^{2}}$
C.y=1,y=x0D.y=a${\;}^{lo{g}_{a}x}$,y=logaax

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知α,β为锐角,cosα=$\frac{1}{7}$,sin(α+β)=$\frac{5}{14}$$\sqrt{3}$,求cosβ的值及β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知单位正方体ABCD-A1B1C1D1,E,F分别是棱B1C1、C1D1的中点,试求:
(1)AD1与EF所成角的大小;
(2)AF与平面BEB1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,点P是AD1上的动点.
(Ⅰ)试判断不论点P在AD1上的任何位置,是否都有平面B1PA1垂直于平面AA1D1?并证明你的结论;
(Ⅱ)当P为AD1的中点时,求异面直线AA1与B1P所称角的余弦值;
(Ⅲ)求直线PB1与平面AA1D1所成角的正切值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2$\sqrt{2}$.
(1)求异面直线PB与直线AC所成角;
(2)在线段PD上是否存在一点Q,使CQ与平面PBD所成的角的正弦值为$\frac{2\sqrt{6}}{9}$,若存在,指出点Q的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.棱长为a的正方体可任意摆放,则其在水平平面上投影面积的最大值为(  )
A.$\sqrt{3}$a2B.$\sqrt{2}$a2C.$\frac{3\sqrt{3}}{4}$a2D.2a2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知抛物线x2=3y上两点A,B的横坐标恰是方程x2+5x+1=0的两个实根,则直线AB的斜率=$-\frac{5}{3}$;直线AB的方程为5x+3y+1=0.

查看答案和解析>>

同步练习册答案