【题目】(1)取何值时,方程()无解?有一解?有两解?有三解?
(2)函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数的性质,并在此基础上,作出其在的草图;
【答案】(1)时,无解;时,有一解;时,有两解;时,有三解;
(2)定义域为,值域为,周期为,在为增函数,在上为减函数,偶函数;作图见解析
【解析】
(1)令函数,由,得的单调性和值域,由此得的何值范围;
(2)先研究的定义域、奇偶性、周期性,再研究函数的单调性、值域,最后画出图形.
(1)令,,,
在,递增,在递减,,
,,
综上:时,无解;时,有一解;时,有两解;时,有三解.
(2)∵,∴f(x)的定义域为R;
∵,∴f(x)为偶函数;
∵f(x+π)==+=f(x),∴f(x)是周期为π的周期函数;
当时,f(x)=,
∴当时,f(x)单调递减;当时,
f(x)=,
f(x)单调递增;又∵f(x)是周期为π的偶函数,
∴f(x)在上单调递增,在上单调递减(k∈Z);
∵当时,;当时,.∴f(x)的值域为;
由以上性质可得:f(x)在[﹣π,π]上的图象如图所示:
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,底面,,为线段的中点,若为线段上的动点(不含).
(1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;
(2)求二面角的余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程(为常数)有解,则解得个数一定是偶数;(4)是偶函数且有最小值.其中假命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集为,,定义集合的特征函数为,对于,,给出下列四个结论:
(1)对任意,有
(2)对任意,若,则
(3)对任意,有
(4)对任意,有
其中,正确的序号是_____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某游戏棋盘上标有第、、、、站,棋子开始位于第站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第站或第站时,游戏结束.设游戏过程中棋子出现在第站的概率为.
(1)当游戏开始时,若抛掷均匀硬币次后,求棋子所走站数之和的分布列与数学期望;
(2)证明:;
(3)若最终棋子落在第站,则记选手落败,若最终棋子落在第站,则记选手获胜.请分析这个游戏是否公平.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且
()求数列的通项公式;
()若数列满足,求数列的通项公式;
()在()的条件下,设,问是否存在实数使得数列是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数的对称性有如下结论:对于给定的函数,如果对于任意的都有成立为常数),则函数关于点对称.
(1)用题设中的结论证明:函数关于点;
(2)若函数既关于点对称,又关于点对称,且当时,,求:①的值;
②当时,的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的值域是,有下列结论:①当时,; ②当时,;③当时,; ④当时,.其中结论正确的所有的序号是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为的等边三角形中,点分别是边上的点,满足且,将沿直线折到的位置. 在翻折过程中,下列结论成立的是( )
A.在边上存在点,使得在翻折过程中,满足平面
B.存在,使得在翻折过程中的某个位置,满足平面平面
C.若,当二面角为直二面角时,
D.在翻折过程中,四棱锥体积的最大值记为,的最大值为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com