精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体的棱长为1EF分别为棱AB上的点,下列说法正确的是________.(填上所有正确命题的序号)

平面

在平面内总存在与平面平行的直线

在侧面上的正投影是面积为定值的三角形

EF为中点时,平面截该正方体所得的截面图形是五边形

【答案】②③④

【解析】

根据正方体的性质对每个命题进行判断.①根据线面垂直的性质定理判断,②根据线面平行的判定定理判断,③作出投影后可求解,④作出截面可得.

①若平面,则有

又正方体中平面在平面内,因此有

是相交直线,由有平面,因此有,但只有重合时,这个垂直才成立.故①错误;

②如果任意两个平面平行,则一个平面内任一直线与另一平面平行,如果两个平面相交,则其中一个平面内与交线平行的直线必与另一平面平行.所以对任意两个平面,一个平面内一定有直线与另一平面平行,②正确;

③如图,的投影是的投影是,即的投影是上,因此的面积是定值.③正确;

④作出完整的截面:

延长交于点,连接,在上取点,使得.连接,可以证明,即在边上,截面是五边形,④正确.

故答案为:②③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20172月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中准备参加”“不准备参加待定的人数如表:

准备参加

不准备参加

待定

男生

30

6

15

女生

15

9

25

(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在准备参加”“不准备参加待定的同学中应各抽取多少人?

(2)准备参加的同学中用分层抽样方法抽取6,从这6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于以为公共焦点的椭圆和双曲线,设是它们的一个公共点,分别为它们的离心率.,则的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数yfx)的定义域为R,并且满足fx+y)=fx)+fy),f)=1,当x>0时,fx)>0.

(1)求f(0)的值;

(2)判断函数的奇偶性;

(3)如果fx)+f(2+x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店经营的消费品进价每件14元,月销售量(百件)与销售价格p(元)的关系如下图,每月各种开支2000.

(1)写出月销售量(百件)与销售价格p(元)的函数关系;

(2)写出月利润y(元)与销售价格p(元)的函数关系:

(3)当商品价格每件为多少元时,月利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

设平面上向量(cosαsinα) (0°≤α360°)()

(1)试证:向量垂直;

(2)当两个向量的模相等时,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1) 证明:PB∥平面AEC

(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.

1)求摸球三次得分为5的概率;

2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案