【题目】如图,正方体的棱长为1,E,F分别为棱,AB上的点,下列说法正确的是________.(填上所有正确命题的序号)
①平面
②在平面内总存在与平面平行的直线
③在侧面上的正投影是面积为定值的三角形
④当E,F为中点时,平面截该正方体所得的截面图形是五边形
【答案】②③④
【解析】
根据正方体的性质对每个命题进行判断.①根据线面垂直的性质定理判断,②根据线面平行的判定定理判断,③作出投影后可求解,④作出截面可得.
①若平面,则有,
又正方体中平面,在平面内,因此有,
与是相交直线,由有平面,因此有,但只有与重合时,这个垂直才成立.故①错误;
②如果任意两个平面平行,则一个平面内任一直线与另一平面平行,如果两个平面相交,则其中一个平面内与交线平行的直线必与另一平面平行.所以对任意两个平面,一个平面内一定有直线与另一平面平行,②正确;
③如图,的投影是,的投影是,即的投影是,在上,因此的面积是定值.③正确;
④作出完整的截面:
延长交于点,连接交于,在上取点,使得.连接,可以证明,即在边上,截面是五边形,④正确.
故答案为:②③④.
科目:高中数学 来源: 题型:
【题目】自2017年2月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中“准备参加”“不准备参加”和“待定”的人数如表:
准备参加 | 不准备参加 | 待定 | |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在“准备参加”“不准备参加”和“待定”的同学中应各抽取多少人?
(2)在“准备参加”的同学中用分层抽样方法抽取6人,从这6人中任意抽取2人,求至少有一名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f()=1,当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店经营的消费品进价每件14元,月销售量(百件)与销售价格p(元)的关系如下图,每月各种开支2000元.
(1)写出月销售量(百件)与销售价格p(元)的函数关系;
(2)写出月利润y(元)与销售价格p(元)的函数关系:
(3)当商品价格每件为多少元时,月利润最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代码t | 1 | 2 | 3 | 4 | 5 | 6 |
年产量y(万吨) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根据表中数据,建立关于的线性回归方程;
(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.(参考数据:,计算结果保留小数点后两位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.
(1)求“摸球三次得分为5分”的概率;
(2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com