【题目】如图所示,三棱锥放置在以为直径的半圆面上,为圆心,为圆弧上的一点,为线段上的一点,且,,.
(Ⅰ)求证:平面平面;
(Ⅱ)当二面角的平面角为时,求的值.
【答案】(Ⅰ)详见解析;(Ⅱ).
【解析】
(Ⅰ)通过勾股定理,证明,得到平面,再证明平面,得到平面平面.
(Ⅱ)建立空间直角坐标系,设,表示出面的一个法向量和面的一个法向量,然后将二面角转化为两个法向量之间的夹角,利用向量的夹角公式,求出,从而得到的值.
解:(Ⅰ)证明:由,
,
∴,
又且,
∴平面.
∵平面,
∴,
由,圆心为中点,所以.
因,故平面,
又平面,
所以平面平面.
(Ⅱ)由(Ⅰ)知平面,且,过点作的平行线,
建立如图所示的空间直角坐标系,
由题意知,,,,
设,
则, ,
设为平面的一个法向量,
则,
令,则,所以,
取平面的一个法向量为.
因为二面角的平面角为,
所以,
解得或(舍去),
所以当二面角的平面角为时,.
,
科目:高中数学 来源: 题型:
【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在到之间,将测量结果按如下方式分成六组:第1组,第2组,…,第6组,如图是按上述分组得到的频率分布直方图,以频率近似概率.
(1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;
(2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;
(3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形,,,,点是的中点,现沿将平面折起,设.
(1)当为直角时,求直线与平面所成角的大小;
(2)当为多少时,三棱锥的体积为;
(3)在(2)的条件下,求此时二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的.若有的把握认为是否追星和性别有关,则男生至少有( )
参考数据及公式如下:
A. 12B. 11C. 10D. 18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把一系列向量按次序排成一排,称之为向量列,记作,向量列满足:
(1)求数列的通项公式;
(2)设表示向量间的夹角,为与轴正方向的夹角,若,求.
(3)设,问数列中是否存在最小项?若存在,求出最小项,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的非负半轴重合,若曲线的极坐标系方程为
,直线的参数方程为为参数).
(1)求曲线的直角坐标方程与直线的普通方程;
(2)设点直线与曲线交于两点, 求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,的四个顶点围成的四边形的面积为.
(1)求的方程;
(2)过的左焦点作直线与交于、两点,线段的中点为,直线(为坐标原点)与直线相交于点,是否存在直线使得为等腰直角三角形,若存在,求出的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( )
A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐
B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐
C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐
D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com