精英家教网 > 高中数学 > 题目详情
已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x+x2
(1)求x<0时,f(x)的解析式;
(2)问是否存在这样的非负数a,b,当x∈[a,b]时,f(x)的值域为[4a-2,6b-6]?若存在,求出所有的a,b值;若不存在,请说明理由.
分析:(1)设x<0,则-x>0,利用x≥0时,f(x)=x+x2.得到f(-x)=-x+x2,再由奇函数的性质得到f(-x)=-f(x),代换即可得到所求的解析式.
(2)假设存在这样的数a,b.利用函数单调性的性质建立方程求参数,若能求出,则说明存在,否则说明不存在.
解答:解:(1)设x<0,则-x>0,于是f(-x)=-x+x2
又f(x)为奇函数,f(-x)=-f(x),∴-f(x)=-x+x2
即x<0时,f(x)=x-x2.…(4分)
(2)假设存在这样的数a,b.
∵a≥0,且f(x)=x+x2在x≥0时为增函数,…(6分)
∴x∈[a,b]时,f(x)∈[f(a),f(b)]=[4a-2,6b-6],
6b-6=f(b)=b2+b
4a-2=f(a)=a2+a
…(8分)
?
b2-5b+6=0
a2-3a+2=0
?
b=2或b=3
a=1或a=2
,即
a=1
b=2
a=1
b=3
…(10分)
a=2
b=2
a=2
b=3
,考虑到0≤a<b,且4a-2<6b-6,…(12分)
可得符合条件的a,b值分别为
a=1
b=2
a=1
b=3
a=2
b=3.
…(14分)
点评:本题考查函数奇偶性的性质以及函数的值域,解题的关键是利用函数的性质进行灵活代换求出解析式,第二问的解题关键是根据单调性建立方程求参数,此是函数中求参数常用的建立方程的方式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
ax
的定义域为(0,+∞),a>0且当x=1时取得最小值,设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值;
(2)问:PM•PN是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案