精英家教网 > 高中数学 > 题目详情
10.已知向量$\vec a$=(cosα,-1),$\vec b$=(2,sinα),且$\vec a•\vec b=0$
(1)求tan(α+$\frac{π}{4}$)的值;
(2)求$\frac{sin2α}{{{{sin}^2}α-cos2α-1}}$的值.

分析 由数量积的坐标运算求得tanα=2.
(1)展开两角和的正切,代入tanα的值得答案;
(2)把分母中的1换为sin2α+cos2α,然后分子分母同时除以cos2α,转化为正切求解.

解答 解:∵$\vec a$=(cosα,-1),$\vec b$=(2,sinα),且$\vec a•\vec b=0$,
∴2cosα-sinα=0,即tanα=2.
(1)tan(α+$\frac{π}{4}$)=$\frac{tanα+tan\frac{π}{4}}{1-tanα•tan\frac{π}{4}}=\frac{2+1}{1-2×1}=-3$;
(2)$\frac{sin2α}{{{{sin}^2}α-cos2α-1}}$=$\frac{2sinα•cosα}{si{n}^{2}α-co{s}^{2}α+si{n}^{2}α-si{n}^{2}α-co{s}^{2}α}$
=$\frac{2sinα•cosα}{si{n}^{2}α-2co{s}^{2}α}=\frac{2tanα}{ta{n}^{2}α-2}=\frac{2×2}{{2}^{2}-2}=2$.

点评 本题考查平面向量数量积的运算,考查同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在空间直角坐标系中,点(2,1,4)关于xOy平面对称点的坐标为(  )
A.(-2,-1,4)B.(-2,1,-4)C.(2,1,-4)D.(2,-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一轮船行驶时,单位时间的燃料费u与其速度v的立方成正比,若轮船的速度为每小时20km时,燃料费为每小时40元,其余费用每小时为270元,这部分费用不随速度而变化.
(1)求u是v的函数关系式;
(2)求轮船速度为多少时,轮船航行每千米的费用最少(轮船最高速度为bkm/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y的值如表所示:如果y与x呈线性相关且回归直线方程为y=$\hat b$x-1.4,则b=(  )
x23456
y23578
A.1.6B.2.6C.3.6D.4.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,以Ox轴为始边做锐角α和钝角β,它们的终边分别与单位圆相交于A、B两点,已知A、B的纵坐标分别为$\frac{{\sqrt{5}}}{5}$,$\frac{{\sqrt{10}}}{10}$.
(1)求tan(2α-β)的值; 
(2)求β-α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知an=$\frac{2}{{{n^2}+2n}}$,则S6=(  )
A.$\frac{69}{56}$B.$\frac{7}{8}$C.$\frac{69}{28}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若某校高一年级8个年级合唱比赛的得分如下:89、87、93、91、96、94、90、92,这组数据的中位数和平均数分别为(  )
A.91.5和91.5B.91.5和92C.91和91.5D.92和92

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,AB为半圆O的直径,AD⊥AB,过D作圆的另一切线DC交AB的延长线于E,C为切点,连接BC,OD.
(Ⅰ)求证:BC∥OD;
(Ⅱ)如果EB=2,OB=1,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两所学校高一年级分别有1 200人,1 000人,为了了解两所学校全体高一年级学生在该地区某次联考中的技术考试成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的技术考试成绩,并作出了频数分布统计表如表:
甲校:
分组[70,80)[80,90)[90,100)[100,110)
频数34815
分组[110,120)[120,130)[130,140)[140,150]
频数15x32
乙校:
分组[70,80)[80,90)[90,100)[100,110)
频数1289
分组[110,120)[120,130)[130,140)[140,150]
频数1010y3
(1)计算x,y的值;
(2)若成绩不小于120分为优秀,否则为非优秀,由以上统计数据填写答题卷中的2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为两所学校高一技术考试成绩有差异(计算保留3位小数).
参考数据与公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
临界值表:
P(K2≥k00.150.100.050.010
k02.0722.7063.8416.635

查看答案和解析>>

同步练习册答案