精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)讨论函数的单调性;

(2)若函数时恒成立,求实数的取值范围;

(3)若函数,求证:函数的极大值小于1.

【答案】(1)见解析;(2)(3)见证明

【解析】

1)先对函数求导,分别讨论,即可得出结果;

2)先将函数时恒成立,转化为上恒成立,再设,利用导数方法求出的最大值,即可得出结果;

3)先由题意得到,对求导,利用导数的方法研究其单调性,即可求出其极大值,得出结论.

解:(1)由于

时,上单调递减;

时,由,由

所以上单调递减,上单调递增.

(2)若上恒成立,

只需.

,则

,所以

的变化情况如下:

1

+

0

-

极大值

所以,所以.

(3)由题知

则函数上单调递减,

所以存在唯一的

时,;当时,.

所以函数的单调递增区间是,单调递减区间是

其中,所以函数有极大值.

函数的极大值是,由,得

所以,因为,所以,即

所以的极大值小于1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据调查显示,某高校万男生的身高服从正态分布,现从该校男生中随机抽取名进行身高测量,将测量结果分成组: 并绘制成如图所示的频率分布直方图.

(Ⅰ)求这名男生中身高在(含)以上的人数;

(Ⅱ)从这名男生中身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全校前名的人数记为,求的数学期望.

(附:参考数据:若服从正态分布,则 .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(sinx,cosx),=(sin(x﹣),sinx),函数f(x)=2,g(x)=f().

(1)求f(x)在[,π]上的最值,并求出相应的x的值;

(2)计算g(1)+g(2)+g(3)++g(2014)的值;

(3)已知tR,讨论g(x)在[t,t+2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年春节期间,某服装超市举办了一次有奖促销活动,消费每超过元(含元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有个形状、大小完全相同的小球(其中红球个,黑球个)的抽奖盒中,一次性摸出个球,其中奖规则为:若摸到个红球,享受免单优惠;若摸出个红球则打折,若摸出个红球,则打折;若没摸出红球,则不打折.方案二:从装有个形状、大小完全相同的小球(其中红球个,黑球个)的抽奖盒中,有放回每次摸取球,连摸次,每摸到次红球,立减.

1)若两个顾客均分别消费了元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

2)若某顾客消费恰好满元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线交于两点,与椭圆交于两点,直线为坐标原点)的斜率分别为,若.

(1)是否存在实数,满足,并说明理由;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额 (百元)的频率分布直方图如图所示:

(1)求网民消费金额的平均值和中位数

(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关;

合计

30

合计

45

附表:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数abc满足a+b+c0a2+b2+c2,求a4+b4+c4的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古代数学名著《九章算术》中的“盈不足”问题知两鼠穿垣.今有垣厚5尺,两鼠对穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.问:何日相逢?题意是:由垛厚五尺(旧制长度单位, 尺= 寸)的墙壁,大小两只老鼠同时从墙的两面,沿一直线相对打洞.大鼠第一天打进尺,以后每天的速度为前一天的倍;小鼠第一天也打进尺,以后每天的进度是前一天的一半.它们多久可以相遇?

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;

(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.

查看答案和解析>>

同步练习册答案