精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)是定义在R上的可导函数,其导函数为f′(x),则命题P:“?x1,x2∈R,且x1≠x2,|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|<2017”是命题Q:“?x∈R,|f′(x)|<2017”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 由Q⇒P,反之不成立.即可判断出结论.

解答 解:命题Q:“?x∈R,|f′(x)|<2017”⇒?x1,x2∈R,且x1≠x2,|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|<2017;
反之不一定成立,由?x1,x2∈R,且x1≠x2,|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|<2017可能得到:?x∈R,|f′(x)|≤2017.
∴命题P是Q的必要不充分条件.
故选:B.

点评 本题考查了导数的性质及其几何意义、割线的斜率,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.一个三角形的直观图是腰长为$\sqrt{6}$,底为4的等腰三角形,则原三角形面积是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,则输出的S值为(  )
A.10B.-10C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等差数列{an}的公差d为正数,a1=1,2(anan+1+1)=tn(1+an),t为常数,则an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若($\frac{1}{x}$+2x)6展开式的常数项为(  )
A.120B.160C.200D.240

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知各项均不相等的等差数列{an}满足a1=1,且a1,a2,a5成等比数列.
(1)求{an}的通项公式;
(2)若bn=(-1)n$\frac{{a}_{n}+{a}_{n+1}}{{a}_{n}{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点P($\sqrt{3}$,1),Q(cosx,sinx),O为坐标原点,函数f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.α是一个平面,m,n是两条直线,A是一个点,若m?α,n?α,且A∈m,A∈α,则m,n的位置关系不可能是(  )
A.垂直B.相交C.异面D.平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在四棱锥S-ABCD中,底面ABCD为平行四边形,∠DBA=60°,∠SAD=30°,AD=SD=2$\sqrt{3}$,BA=BS=4.
(Ⅰ)证明:BD⊥平面SAD;
(Ⅱ)求点C到平面SAB的距离.

查看答案和解析>>

同步练习册答案