【题目】为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示:劳伦茨曲线为直线时,表示收入完全平等,劳伦茨曲线为折线时,表示收入完全不平等记区域为不平等区域,表示其面积,为的面积.将,称为基尼系数.对于下列说法:
①越小,则国民分配越公平;
②设劳伦茨曲线对应的函数为,则对,均有;
③若某国家某年的劳伦茨曲线近似为,则;
④若某国家某年的劳伦茨曲线近似为,则.
其中不正确的是:( )
A.①④B.②③C.①③④D.①②④
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心为原点,焦点为,离心率为,不与坐标轴垂直的直线与椭圆交于,两点.
(1)若为线段的中点,求直线的方程.
(2)若点是直线上一点,点在椭圆上,且满足,设直线与直线的斜率分别为,,问是否为定值?若是,请求出的值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中中,曲线的参数方程为(为参数,).以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;
(2)若曲线上所有的点均在直线的右下方,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.
(Ⅰ)设为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件发生的概率;
(Ⅱ)设表示参加文明宣传工作的女志愿者人数,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线x2=2py(p>0)的焦点为F(0,1),过F的两条动直线AB,CD与抛物线交出A、B、C、D四点,直线AB,CD的斜率存在且分别是k1(k1>0),k2.
(Ⅰ)若直线BD过点(0,3),求直线AC与y轴的交点坐标
(Ⅱ)若k1﹣k2=2,求四边形ACBD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l: 椭圆C: ,分别为椭圆的左右焦点.
(1)当直线l过右焦点时,求C的标准方程;
(2)设直线l与椭圆C交于A,B两点,O为坐标原点,若∠AOB是钝角,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com