精英家教网 > 高中数学 > 题目详情

函数f(x)=aex+x在x=1处取到极值,则a的值为________(e是自然对数的底数)


分析:导数在极值点处的值为零得方程求解
解答:f′(x)=aex+1
∵函数f(x)=aex+x在x=1处取到极值
∴f′(1)=ae+1=0
∴a=
故答案为
点评:导数在极值点处的值为零
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与两坐标轴的交点处的切线相互平行.若关于x的不等式
x-m
g(x)
x
对任意不等于1的正实数都成立,则实数m的取值集合是
{1}
{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山二模)函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行.
(Ⅰ)求此平行线的距离;
(Ⅱ)若存在x使不等式
x-m
f(x)
x
成立,求实数m的取值范围;
(Ⅲ)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex+2x2在(0,f(0))处的切线与直线2x-y-3=0平行,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行
(1)求函数y=g(x)的解析式;
(2)若关于x的不等式
x-m
g(x)
x
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与两坐标轴的交点处的切线相互平行.
(1)求实数a的值;
(2)若关于x的不等式
x-m
g(x)
x
对任意不等于1的正实数都成立,求实数m的取值集合.

查看答案和解析>>

同步练习册答案