【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
【答案】
(1)证明:设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM),
将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,
则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,
则x1+x2= ,则xM= = ,yM=kxM+b= ,
于是直线OM的斜率kOM= = ,
即kOMk=﹣9,
∴直线OM的斜率与l的斜率的乘积为定值
(2)解:四边形OAPB能为平行四边形.
∵直线l过点( ,m),
∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,
即k2m2>9b2﹣9m2,
∵b=m﹣ m,
∴k2m2>9(m﹣ m)2﹣9m2,
即k2>k2﹣6k,
则k>0,
∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,
由(1)知OM的方程为y= x,
设P的横坐标为xP,
由 得 ,即xP= ,
将点( ,m)的坐标代入l的方程得b= ,
即l的方程为y=kx+ ,
将y= x,代入y=kx+ ,
得kx+ = x
解得xM= ,
四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM,
于是 =2× ,
解得k1=4﹣ 或k2=4+ ,
∵ki>0,ki≠3,i=1,2,
∴当l的斜率为4﹣ 或4+ 时,四边形OAPB能为平行四边形
【解析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM , 建立方程关系即可得到结论.
科目:高中数学 来源: 题型:
【题目】一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.
(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;
(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线 的离心率e=2,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根分别为x1和x2 , 则点P(x1 , x2) 满足( )
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=2上
D.以上三种情形都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线Cx2﹣y2=1及直线l:y=kx﹣1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为 ,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ]
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(为参数),在以坐标原点为极点, 轴的正半轴为极轴建立的极坐标系中,圆的极坐标方程为.
(1)求直线被圆截得的弦长;
(2)若点的坐标为,直线与圆交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1+3a2+32a3+…+3n﹣1an= ,n∈N+ .
(1)求数列{an}的通项公式;
(2)设anbn=n,求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形ABCD中, ,点分别在边上,且, 交于点.现将沿折起,使得平面平面,得到图2.
(Ⅰ)在图2中,求证: ;
(Ⅱ)若点是线段上的一动点,问点在什么位置时,二面角的余弦值为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com