精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

【答案】
(1)证明:设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM),

将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,

则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,

则x1+x2= ,则xM= = ,yM=kxM+b=

于是直线OM的斜率kOM= =

即kOMk=﹣9,

∴直线OM的斜率与l的斜率的乘积为定值


(2)解:四边形OAPB能为平行四边形.

∵直线l过点( ,m),

∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,

即k2m2>9b2﹣9m2

∵b=m﹣ m,

∴k2m2>9(m﹣ m)2﹣9m2

即k2>k2﹣6k,

则k>0,

∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,

由(1)知OM的方程为y= x,

设P的横坐标为xP

,即xP=

将点( ,m)的坐标代入l的方程得b=

即l的方程为y=kx+

将y= x,代入y=kx+

得kx+ = x

解得xM=

四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM

于是 =2×

解得k1=4﹣ 或k2=4+

∵ki>0,ki≠3,i=1,2,

∴当l的斜率为4﹣ 或4+ 时,四边形OAPB能为平行四边形


【解析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM , 建立方程关系即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.

(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;
(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 的离心率e=2,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根分别为x1和x2 , 则点P(x1 , x2) 满足(
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=2上
D.以上三种情形都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线Cx2﹣y2=1及直线l:y=kx﹣1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为 ,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ]
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),在以坐标原点为极点, 轴的正半轴为极轴建立的极坐标系中,圆的极坐标方程为

(1)求直线被圆截得的弦长;

(2)若点的坐标为,直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1+3a2+32a3+…+3n1an= ,n∈N+
(1)求数列{an}的通项公式;
(2)设anbn=n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中, ,点分别在边上,且 于点.现将沿折起,使得平面平面,得到图2.

(Ⅰ)在图2中,求证:

(Ⅱ)若点是线段上的一动点,问点什么位置时,二面角的余弦值为

查看答案和解析>>

同步练习册答案