精英家教网 > 高中数学 > 题目详情

【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元? (服装厂售出一件服装的利润=实际出厂单价﹣成本)

【答案】
(1)解:当0<x≤100时,P=60,

当100<x≤500时,P=60﹣0.02(x﹣100)=62﹣ x,

所以P=f(x)= (x∈N)


(2)解:设销售商的一次订购量为x件时,工厂获得的利润为L元,

则L=(P﹣40)x=

此函数在[0,500]上是增函数,故当x=500时,函数取到最大值,

因此,当销售商一次订购了500件服装时,该厂获利的利润是6000元


【解析】(1)服装的实际出厂单价为P,应按x≤100和x>100两类分别计算,故函数P=f(x)应为分段函数;(2)由(1)可求出销售商一次订购了450件服装时的出厂价P,450(P﹣40)即为所求;也可列出当销售商一次订购x件服装时,该服装厂获得的利润函数,再求x=500时的函数值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ )的图象,只需把正弦曲线y=sinx上所有点(
A.向右平移 个单位长度,再将所得图象上的点横坐标缩短为原来的 倍,纵坐标不变
B.向左平移 个单位长度,再将所得图象上的点横坐标缩短为原来的 倍,纵坐标不变
C.向右平移 个单位长度,再将所得图象上的点横坐标伸长为原来的2倍,纵坐标不变
D.向左平移 个单位长度,再将所得图象上的点横坐标缩短为原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差不为零的等差数列,a1=1,且a2 , a4 , a8成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:a1b1+a2b2+a3b3+…+anbn=2n+1 , n∈N* , 令cn= ,n∈N* , 求数列{cncn+1}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断f(x)的奇偶性;
(2)判断f(x)在R上的单调性,并用定义证明;
(3)是否存在实数t,使不等式f(x﹣t)+f(x2﹣t2)≥0对一切x∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

1)写出直线的普通方程和曲线的直角坐标方程;

2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是岁.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的前项和为,且

1)求数列的通项公式;

2)数列中, ,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔选手参加中国谜语大会,某中学举行了一次谜语大赛活动,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数得分取正整数,满分为100分作为样本,样本容量为进行统计.按照的分组作出如下频率分布直方图.

1由如下茎叶图图中仅列出了得分在的数据提供的信息,求样本容量和频率分布直方图中的的值;

2在选取的样本中,从竞赛成绩在80分以上含80分的学生中随机抽取2名学生参加中国谜语大会,求所抽取的2名学生中至少有一人得分在内的概率.

查看答案和解析>>

同步练习册答案