【题目】已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.
科目:高中数学 来源: 题型:
【题目】已知函数(,).
(1)当(e为自然对数的底数)时,
(i)若在上恰有两个不同的零点,求实数m的取值范围;
(ii)若(),求在上的最大值;
(2)当时,,,数列满足.求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线C:y2=2px(p>0)的焦点为F,准线为l,AB为过焦点F且垂直于x轴的抛物线C的弦,已知以AB为直径的圆经过点(-1,0).
(1)求p的值及该圆的方程;
(2)设M为l上任意一点,过点M作C的切线,切点为N,证明:MF⊥NF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点分别为,,为椭圆C上一点.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为,,过,分别作x轴的垂线,,椭圆C的一条切线与,交于M,N两点,求证:是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.
(1)求抛物线的方程及点的坐标;
(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率为,直线恒过的一个焦点.
(1)求的标准方程;
(2)设为坐标原点,四边形的顶点均在上,交于,且,若直线的倾斜角的余弦值为,求直线与轴交点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com