【题目】已知数列的前项和为且满足,数列中,对任意正整数
(1)求数列的通项公式;
(2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比的值,若不存在,请说明理由;
(3)求证:.
【答案】(1) (2) (3)见解析
【解析】试题分析:
(1)由通项公式与前n项和的关系可得数列的通项公式为;
(2)假设存在满足题意的实数 ,利用等比数列的定义得到关于 的方程,解方程可得;
(3)求得数列的前n项和,分类讨论n的奇偶性即可证得题中不等式的结论.
试题解析:
(1)当时, ,
当时, ,
即,
也适合,所以.
(2)法一:
假设存在实数,使数列是等比数列,且公比为.
因为对任意正整数,,
可令n=2,3,得 .
因为是等比数列,所以
, 解得
从而 ()
所以存在实数,公比为.
法二:
因为对任意整数,, 所以,
设 ,则,
所以存在,且公比.
(3)因为,所以 ,
所以,即,
于是
当是奇数时: ,关于递增,
得 .
当是偶数时: ,关于递增,
得 .
综上, .
科目:高中数学 来源: 题型:
【题目】把离心率的双曲线称为黄金双曲线.给出以下几个说法:
①双曲线是黄金双曲线;
②若双曲线上一点到两条渐近线的距离积等于,则该双曲线是黄金双曲线;
③若为左右焦点,为左右顶点,且,则该双曲线是黄金双曲线;
④.若直线经过右焦点交双曲线于两点,且,,则该双曲线是黄金双曲线;
其中正确命题的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①所示,四边形为等腰梯形,,且于点为的中点.将沿着折起至的位置,得到如图②所示的四棱锥.
(1)求证:平面;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布如图所示.
(1)请先求出频率分布表中①、②位置相应的数据,再画出频率分布直方图;
(2)该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受考官的面试,求第4组至少有一名学生被考官面试的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的值;
(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;
(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各式:
(1);
(2)已知,则;
(3)函数的图象与函数的图象关于y轴对称;
(4)函数的定义域是R,则m的取值范围是;
(5)函数的递增区间为.
正确的有______________________.(把你认为正确的序号全部写上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,为两非零有理数列(即对任意的,均为有理数),为一无理数列(即对任意的,为无理数).
(1)已知,并且对任意的恒成立,试求的通项公式.
(2)若为有理数列,试证明:对任意的,恒成立的充要条件为.
(3)已知,,对任意的,恒成立,试计算.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com