精英家教网 > 高中数学 > 题目详情
已知A是△ABC的一个内角,tanA=-1,则cosA=(  )
分析:由tanA的值小于0,得到A为钝角,故cosA小于0,然后利用同角三角函数间的倒数关系cosAsecA=1及平方关系1+tan2A=sec2A,由tanA的值即可求出cosA的值.
解答:解:∵tanA=-1<0,
∴90°<A<180°,
则cosA=
1
secA
=-
1
1+tan2A
=-
2
2

故选B
点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键,同时注意角度的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O是平面上一定点,A﹑B﹑C是平面上不共线的三个点,动点P满足
OP
=
OA
+λ(
AB
|
AB
|sinB
+
AC
|
AC
| sinC
)λ∈[0,+∞),则点P的轨迹一定通过△ABC的(  )
A、外心B、内心C、重心D、垂心

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知O是△ABC外接圆的圆心,A、B、C为△ABC的内角,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m•
AO
,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•宝山区一模)已知A是△ABC的内角,则“sinA=
3
2
”是“tgA=
3
”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC所在平面内的一定点,动点P满足
OP
=
OA
+λ(
AB
|
AB
|
+
AC
|
AC
|
)
,λ∈(0,+∞),则动点P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:013

已知等腰Rt△ABC的一条直角边BC平行于平面α, 点A在α内, 斜边AB=2, 且AB与α所成的角是30°,则AC与α所成的角是

[  ]

A.30°  B.45°  C.60°  D.90°

查看答案和解析>>

同步练习册答案