精英家教网 > 高中数学 > 题目详情

【题目】已知函数 处有极值 .
(1)求 的值;
(2)判断函数 的单调性并求出单调区间.

【答案】
(1)解:f′(x)=2ax

f(x)在x=1处有极值

,即

解得ab=-1.

经检验得ab=-1函数f(x)=ax2blnxx=1处有极值 .


(2)解:由(1)可知f(x)= x2-lnx,其定义域是(0,+∞),且f′(x)=x .

f′(x)=0,解得x=1或x=-1(舍去).

x变化时,f′(x),f(x)的变化情况如下表:

x

(0,1)

1

(1,+∞)

f′(x)

0

f(x)

极小值

所以函数yf(x)的单调减区间是(0,1),单调增区间是(1,+∞).


【解析】(1)根据题意求出导函数利用极值的定义列出关于a和b的函数式即可求出结果。(2)利用导函数以及极值的情况求出函数的单调性。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】所对的边分别为 (其中).

(1)若时,判断为的形状

(2)若,且的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.

非一线

一线

总计

愿生

45

20

65

不愿生

13

22

35

总计

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C.有99%以上的把握认为“生育意愿与城市级别有关”
D.有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )
A.命题“若 ,则 ”的逆否命题为:“若 ,则
B.“ ”是“ ”的充分不必要条件
C.若 为假命题,则 均为假命题
D.命题 :“ ,使得 ”,则 :“ ,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有两个命题, :关于 的不等式 ,且 )的解集是 :函数 的定义域为 .如果 为真命题, 为假命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数为( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分条件;
③命题“若m≤ ,则方程mx2+2x+2=0有实数根”的否命题为真命题.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 (a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+ ,则该双曲线的离心率取值范围是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是自然对数的底数, .
(1)求函数 的单调递增区间;
(2)若 为整数, ,且当 时, 恒成立,其中 的导函数,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两地相距,汽车从甲地行驶到乙地,速度不得超过,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 ()的平方成正比,比例系数为,固定部分为元,

(1)把全程运输成本(元)表示为速度()的函数,指出定义域;

(2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

同步练习册答案