精英家教网 > 高中数学 > 题目详情
已知a>0且a≠1,命题P:函数y=loga(x+1)在区间(0,+∞)上为减函数;命题Q:曲线y=x2+(2a-3)x+1与x轴相交于不同的两点.若P为真,Q为假,求实数a的取值范围.
分析:命题P为真等价于0<a<1,命题Q为真等价于0<a<
1
2
,a>
5
2
,由题意可得
0<a<1
1
2
≤a<1,或1<a≤
5
2
,解之即可.
解答:解:∵a>0且a≠1,∴命题P为真等价于0<a<1,
命题Q为真等价于
△=(2a-3)2-4>0
a>0,且a≠1
,解得0<a<
1
2
,a>
5
2

∵P为真,Q为假,
0<a<1
1
2
≤a<1,或1<a≤
5
2
,解得
1
2
≤a<1,
故实数a的取值范围是[
1
2
,1)
点评:本题考查命题真假的判断与应用,涉及不等式的解法和二次函数的性质,属基础题,.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=
2x-2a,(x≥2a)
2a,(x<2a)
,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,则使方程loga(x-ak)=loga2(x2-a2)有解时的k的取值范围为
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:普陀区二模 题型:解答题

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
1
1-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案