精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

讨论函数的单调性;

设函数的最小值为且关于的方程恰有两个不同的根,求实数的取值集合.

【答案】(1)见解析(2)

【解析】试题分析:(1)先求函数导数,再根据导函数是否变号进行分类讨论:当时,导函数不变号,定义域上单调递增;当时,导函数先负后正,对应单调性先减后增(2)要有两个根,则函数不单调,因此结合函数图像可知,函数先从0增加到再从降到负无穷,因此即得实数的取值集合.

试题解析:(1)

时,时,当时,,当时,

时,在R上递增;当时,上递减,在上递增。

由(1)知,当时,在R上递增,无最小值.

时,上递减,在上递增,所以==

,当时,,当

又当时,,当时,

时关于的方程有两解

实数的取值集合为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0.
(1)求角A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,点P是平面A1BC1内一动点,且满足|PD|+|PB1|=6,则点P的轨迹所形成的图形的面积是(
A.2π
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足(其中.

(1)求函数的解析式,并判断其奇偶性和单调性;

2)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣3)2+(y﹣4)2=4
(1)若平面上有两点A(1,0),B(﹣1,0),点P是圆C上的动点,求使|AP|2+|BP|2取得最小值时点P的坐标;
(2)若Q是x轴上的动点,QM,QN分别切圆C于M,N两点,①若 ,求直线QC的方程;②求证:直线MN恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研小组研究发现:一棵水果树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系: .此外,还需要投入其它成本(如施肥的人工费等)百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为(单位:百元).

(1)求的函数关系式;

当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(t,t),点M是圆O1:x2+(y﹣1)2= 上的动点,点N是圆O2:(x﹣2)2+y2= 上的动点,则|PN|﹣|PM|的最大值是(
A.1
B. ﹣2
C.2+
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为y=kx+b(其中k的值与b无关),圆M的方程为x2+y2﹣2x﹣4=0.
(1)如果不论k取何值,直线l与圆M总有两个不同的交点,求b的取值范围;
(2)b=1,l与圆交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

同步练习册答案