精英家教网 > 高中数学 > 题目详情

【题目】启东市政府拟在蝶湖建一个旅游观光项目,设计方案如下:如图所示的圆O是圆形湖的边界,沿线段AB,BC,CD,DA建一个观景长廊,其中A,B,C,D是观景长廊的四个出入口且都在圆O上,已知:BC=12百米,AB=8百米,在湖中P处和湖边D处各建一个观景亭,且它们关于直线AC对称,在湖面建一条观景桥APC.观景亭的大小、观景长廊、观景桥的宽度均忽略不计,设

1)若观景长廊AD4百米,CD=AB,求由观景长廊所围成的四边形ABCD内的湖面面积;

2)当时,求三角形区域ADC内的湖面面积的最大值;

3)若CD=8百米且规划建亭点P在三角形ABC区域内(不包括边界),试判断四边形ABCP内湖面面积是否有最大值?若有,求出最大值,并写出此时的值;若没有,请说明理由.

【答案】(1)平方百米;(2)平方百米;(3)当=时,四边形ABCP内的湖面面积取到最大值, 最大值为32平方百米.

【解析】

1)分别在中运用余弦定理,求出,进而可得,根据即可得结果;(2)在中,可得,令,在中,运用余弦定理可得,由基本不等式可得,由即可得结果;(3)先求出,计算出,进而可得结果.

解:(1)∵四边形ABCD内接于圆O,∴ABC+ADC=

中,

中,

解得,∴

(平方百米)

答:四边形ABCD内的湖面面积是平方百米.

2)∵=60,∴在中,=112

中,=112

=112

(当且仅当x=y时,取等号)

(平方百米)

答:三角形区域ADC内的湖面面积最大值平方百米.

3)∵点P和点D关于直线AC对称,

APC=ADCPC=CD=8

由(1)知ABC+ADC=,∴ABC+APC=

ABC=,∴APC=

∵点P区域内

,∴

∵在中,

中,

解得(舍去)

,∴四边形ABCP内的湖面面积有最大值,

答:当=时,四边形ABCP内的湖面面积取到最大值,最大值为32平方百米

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816,…,其中第一项是,接下来的两项是,再接下来的三项是,依此类推,若该数列前项和满足:①2的整数次幂,则满足条件的最小的

A. 21B. 91C. 95D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十二生肖,又称十二属相,中国古人拿十二种动物来配十二地支,组成子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪十二属相。现有十二生肖吉祥物各一件,甲、乙、丙三位同学一次随机抽取一件作为礼物,甲同学喜欢马、牛,乙同学喜欢马、龙、狗,丙同学除了鼠不喜欢外其他的都喜欢,则这三位同学抽取的礼物都喜欢的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,过定点作直线与抛物线相交于两点.

1)已知,若点是点关于坐标原点的对称点,求面积的最小值;

2)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若上恒成立,求实数的取值范围;

(Ⅲ)若数列的前项和 ,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知.

(1)求数列的通项公式;

(2)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t为常数).

(1)若k=,t=,数列{an}是等差数列,求a1的值;

(2)若数列{an}是等比数列,求证:k<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,且,数列满足,且

I)求数列的通项公式;

II)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,河北等8省公布了高考改革综合方案将采取模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2.为了更好进行生涯规划,张明同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.

1)若张明同学随机选择3门功课,求他选到物理政治两门功课的概率;

2)试根据茎叶图分析张明同学应在物理和历史中选择哪个学科?并阐述理由.

查看答案和解析>>

同步练习册答案