【题目】设点,直线,点在直线上移动, 是线段与轴的交点, .
(Ⅰ) 求动点的轨迹的方程;
(Ⅱ)直线与轴相交于点,过的直线交轨迹于两点,
试探究点与以为直径的圆的位置关系,并加以说明.
【答案】(1)(2)点在以为直径的圆上或外
【解析】试题分析:(1)由垂直平分线性质将条件转化为.再根据抛物线定义可得动点的轨迹是以为焦点, 为准线的抛物线,最后根据性质求抛物线标准方程(2)直径AB中点即圆心到直线的距离等于A、B两点到直线的距离和的一半,而由抛物线定义有A、B两点到直线的距离和为,因此以为直径的圆与直线相切,进而可判断点与以为直径的圆的位置关系
试题解析:解:(Ⅰ)依题意知: 是线段的垂直平分线.∴是点到直线的距离.∵点在线段的垂直平分线,∴.
故动点的轨迹是以为焦点, 为准线的抛物线, 其方程为: .
(Ⅱ)法一:设A、B两点到直线的距离分别为,
直径AB中点N到直线的距离分别为,
由抛物线定义知, ∴
∴以为直径的圆与直线相切
法二:
(1)当AB垂直轴时,以为直径的圆点为切点,
∴点与以为直径的圆上
(2)当直线与轴不垂直时, ∴点与以为直径的圆外
①当直线AB垂直于轴时,易知以为直径的圆方程为,
点满足方程,∴点与以为直径的圆上
②当直线与轴不垂直时,
设直线AB方程为 与抛物线交点, ,
联立 ,
显然且, 圆直径
AB中点N的坐标(,
,∴点与以为直径的圆外
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(0,2),斜率为k,圆Q:x2+y2﹣12x+32=0.
(1)若直线l和圆相切,求直线l的方程;
(2)若直线l和圆交于A、B两个不同的点,问是否存在常数k,使得+与共线?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为直角坐标系的坐标原点,双曲线 上有一点(),点在轴上的射影恰好是双曲线的右焦点,过点作双曲线两条渐近线的平行线,与两条渐近线的交点分别为, ,若平行四边形的面积为1,则双曲线的标准方程是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装销售公司进行关于消费档次的调查,根据每人月均服装消费额将消费档次分为0-500元;500-1000元;1000-1500元;1500-2000元四个档次,针对两类人群各抽取100人的样本进行统计分析,各档次人数统计结果如下表所示:
0~ 500元 | 500~ 1000元 | 1000~ 1500元 | 1500~ 2000元 | |
A类 | 20 | 50 | 20 | 10 |
B类 | 50 | 30 | 10 | 10 |
月均服装消费额不超过1000元的人群视为中低消费人群,超过1000元的视为中高收入人群.
(Ⅰ)从类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:函数y=log2(x2﹣2x)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1),下列命题是真命题的为( )
A.p∧q
B.p∨q
C.p∧(¬q)
D.¬q
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合M={x|0≤x≤2},N={y|0≤y≤2},从M到N有四种对应如图所示:
其中能表示为M到N的映射关系的有(请填写符合条件的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:=1(a>b>0)的焦距为2 , 且该椭圆经过点(,).
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1 , k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com