精英家教网 > 高中数学 > 题目详情

【题目】某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.

1)求1名顾客摸球2次摸奖停止的概率;

2)记X1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.

【答案】1;(220.

【解析】

(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,即求概率;

(2)的可能取值为:0,10,20,30,40.分别求出取各个值时的概率,即可求出分布列和数学期望.

(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,

所以1名顾客摸球2次摸奖停止的概率

(2)的可能取值为:0,10,20,30,40.

,

∴随机变量X的分布列为:

X

0

10

20

30

40

P

数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年,我国继续实行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取50人调查专项附加扣除的享受情况.

(Ⅰ)应从老、中、青员工中分别抽取多少人?

(Ⅱ)抽取的50人中,享受至少两项专项附加扣除的员工有5人,分别记为.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这5人中随机抽取2人接受采访.

员工

项目

A

B

C

D

E

子女教育

×

×

继续教育

×

×

×

大病医疗

×

×

×

住房贷款利息

×

×

住房租金

×

×

×

赡养老人

×

×

×

1)试用所给字母列举出所有可能的抽取结果;

2)设为事件抽取的2人享受的专项附加扣除全都不相同,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】物联网兴起、发展、完善极大的方便了市民生活需求.某市统计局随机地调查了该市某社区的100名市民网上购菜状况,其数据如下:

每周网上买菜次数

1

2

3

4

5

6次及以上

总计

10

8

7

3

2

15

45

5

4

6

4

6

30

55

总计

15

12

13

7

8

45

100

1)把每周网上买菜次数超过3次的用户称为“网上买菜热爱者”,能否在犯错误概率不超过0.005的前提下,认为是否为“网上买菜热爱者”与性别有关?

2)把每周使用移动支付6次及6次以上的用户称为“网上买菜达人”,视频率为概率,在我市所有“网上买菜达人”中,随机抽取4名用户求既有男“网上买菜达人”又有女“网上买菜达人”的概率.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的三边长分别为a、b、c,且满足.

(1)是否存在边长均为整数的ABC?若存在,求出三边长若不存在,说明理由.

(2),求出ABC周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形,其中三角形区域为球类活动场所;四边形为文艺活动场所,,为运动小道(不考虑宽度)千米.

(1)求小道的长度;

(2)求球类活动场所的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块铁皮零件,其形状是由边长为的正方形截去一个三角形所得的五边形,其中,如图所示.现在需要用这块材料截取矩形铁皮,使得矩形相邻两边分别落在上,另一顶点落在边边上.,矩形的面积为.

1)试求出矩形铁皮的面积关于的函数解析式,并写出定义域;

2)试问如何截取(即取何值时),可使得到的矩形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年是中国改革开放的第40周年,为了充分认识新形势下改革开放的时代性,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图.

(1)现从年龄在内的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用表示年龄在内的人数,求的分布列和数学期望;

(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,的外心为O,EAC的中点,直线OEAB于点D,M、N分别是的外心、内心.AB=2BC,证明:为直角三角形.

查看答案和解析>>

同步练习册答案