精英家教网 > 高中数学 > 题目详情
(1)已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁UB)={1,3,5,7},试求集合B.
(2)已知lg2=a,lg3=b,试用a,b表示log125.
考点:对数的运算性质,交、并、补集的混合运算
专题:函数的性质及应用
分析:(1)由于全集U=A∪B={x∈N|0≤x≤10}={0,1,2,3,4,5,6,7,8,9,10},A∩(∁UB)={1,3,5,7},可得1,3,5,7∈∁UB.即可得出B.
(2)由lg2=a,lg3=b,可得log125=
lg5
2lg2+lg3
=
1-lg2
2lg2+lg3
,即可得出.
解答: 解:(1)∵全集U=A∪B={x∈N|0≤x≤10}={0,1,2,3,4,5,6,7,8,9,10},A∩(∁UB)={1,3,5,7},
∴1,3,5,7∈∁UB.
∴B={0,2,4,6,8,10}.
(2)∵lg2=a,lg3=b,
∴log125=
lg5
2lg2+lg3
=
1-lg2
2lg2+lg3
=
1-a
2a+b
点评:本题考查了集合的运算、对数的运算法则,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
lgx,x>0
10x,x≤0
,则f(x)<1的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数f(x)=2sin(2x-
π
3
)的图象,只要将y=2sinx的图象上所有的点(  )
A、向右平移
π
3
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
B、向右平移
π
3
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C、向右平移
π
6
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
D、向右平移
π
6
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性:
①f(x)=|x+2|-|x-2|;
②f(x)=|x+2|+|x-2|;
③f(x)=
1
2
[g(x)+g(-x)];
④f(x)=
1
2
[g(x)-g(-x)];
⑤f(x)=2x-lnax

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,A1是点A(-3,4,0)关于B(-1,2,3)的对称点,则|AA1|=(  )
A、2
39
B、2
21
C、9
D、2
17

查看答案和解析>>

科目:高中数学 来源: 题型:

化简;
(1)
1-sin2α
•tanα   
(2)(1+tan2α)cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={z||z|≤2,z∈C},集合B={z|z=1+ai,a∈R},其中C为复数集,i为虚数单位,若A∩B≠∅,则实数a的取值范围是(  )
A、(-∞,-
3
)∪(
3
,+∞
B、(-
3
3
C、(-∞,-
3
]∪[
3
,+∞
D、[-
3
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为实数集R,M={x|x2>4},N={x|1<x≤3},则图中阴影部分表示的集合是(  ) 
A、{x|1-2≤x<1}
B、{x|-2≤x≤2}
C、{x|1<x≤2}
D、{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DE的中点.
(1)求证:BE∥平面ACF;
(2)求证:CD⊥DE;
(3)求直线AC与平面ADE所成角的正切值.

查看答案和解析>>

同步练习册答案