精英家教网 > 高中数学 > 题目详情
13.已知y=f(x)是定义域为R的奇函数,且当x>0时,f(x)=3x+x3-5,则函数y=f(x)的零点的个数为(  )
A.1B.2C.3D.4

分析 由x>0时,f(1)<0,f(2)>0且f(x)递增,可得f(x)有一个零点,再由奇函数的图象可得x<0也有一个零点,又x=0时,f(0)=0,即可得到所求零点的个数.

解答 解:根据题意,当x>0时,函数f(x)=3x+x3-5在(0,+∞)上单调递增,
由f(1)=-1<0,f(2)=12>0可得出f(x)的零点的个数为1个,
根据奇函数的图象关于原点对称,可知x<0时,f(x)的零点的个数与x>0时零点个数也是1个,
且x=0时f(0)=0,
即有函数共有3个零点,
故选C.

点评 解本题的关键是利用函数的性质求函数的零点,由定义域为R的奇函数有f(0)=0,再根据奇函数的图象关于原点对称,求出x>0时的零点即可得到x<0时的零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}中,a4a8=9,则a3+a9的取值范围为(  )
A.[6,+∞)B.[6,+∞)∪(-∞,-6]C.(6,+∞)D.(-6,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sin(3x-$\frac{π}{6}$).
(1)求f(0)、f($\frac{2π}{9}$);
(2)分别指出函数f(x)的振幅、相位、初相位的值,并求出其最小正周期;
(3)求函数f(x)的递增区间和递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=logsinβ(x2+ax+3)在区间(-∞,1)上递增,则实数a的取值范围是(  )
A.(-4,-2]B.[-4,-2]C.(-4,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)+cos(ωx-$\frac{π}{6}$)(ω>0)的最小正周期为π.
(1)求函数f(x)的单调递减区间,其图象对称轴的方程和对称中心的坐标;
(2)作出该函数在一个周期内的简图;
(3)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.三个数为$a={log_3}0.2,b={3^{0.2}},c={0.2^3}$,则a,b,c的大小关系为(  )
A.a>c>bB.a<b<cC.a<c<bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中,已知a=$\sqrt{2}$,c=3,B=45°,则b=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\sqrt{3}sinωx+cosωx(ω>0)$的最小正周期为π.对于函数f(x),下列说法正确的是(  )
A.在$[\frac{π}{6},\frac{2π}{3}]$上是增函数
B.图象关于直线$x=\frac{5π}{12}$对称
C.图象关于点$(-\frac{π}{3},0)$对称
D.把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,所得函数图象关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=$\left\{\begin{array}{l}x+2,({x≤2015})\\ f({x-5}),({x>2015})\end{array}$,则f(2018)=2015.

查看答案和解析>>

同步练习册答案