精英家教网 > 高中数学 > 题目详情

【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:

产品A(件)

产品B(件)

研制成本、搭载费用之和(万元)

20

30

计划最大资金额300万元

产品重量(千克)

10

5

最大搭载重量110千克

预计收益(万元)

80

60

试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

【答案】解:设搭载产品Ax件,产品By件,
预计总收益z=80x+60y.
,作出可行域,如图.
作出直线l0:4x+3y=0并平移,由图象得,当直线经过M点时z能取得最大值,
解得 ,即M(9,4).
所以zmax=80×9+60×4=960(万元).
答:搭载产品A9件,产品B4件,可使得总预计收益最大,为960万元.

【解析】我们可以设搭载的产品中A有x件,产品B有y件,我们不难得到关于x,y的不等式组,即约束条件和目标函数,然后根据线行规划的方法不难得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直线与椭圆交于两点,与轴交于点, 为弦的中点,直线分别与直线和直线交于两点.

(1)求直线的斜率和直线的斜率之积;

(2)分别记的面积为,是否存在正数,使得若存在,求出的取值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC中,已知PA=PB=PC=AC=4,BC= AB=2 ,O为AC中点.

(1)求证:PO⊥平面ABC;
(2)求异面直线AB与PC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+mx+n(m、n∈R)的两个零点分别在(0,1)与(1,2)内,则(m+1)2+(n﹣2)2的取值范围是(
A.
B.
C.[2,5]
D.(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在[﹣1,1]上的奇函数,且对任意a、b∈[﹣1,1],当a+b≠0时,都有 >0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x﹣ )<f(x﹣ );
(3)记P={x|y=f(x﹣c)},Q={x|y=f(x﹣c2)},且P∩Q=,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a为常数),则a的取值范围是(
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (m,n为常数)是定义在[﹣1,1]上的奇函数,且f(﹣1)=﹣
(1)求函数f(x)的解析式;
(2)解关于x的不等式f(2x﹣1)<﹣f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1长为4,且AA1与A1B1 , A1D1的夹角都是60°,则AC1的长等于(

A.10
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是(
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

同步练习册答案