精英家教网 > 高中数学 > 题目详情

【题目】如图,已知焦点在轴上的椭圆的中心是原点离心率为以椭圆的端州的两端点和两焦点所围成的四边形的周长为8,直线轴交于点与椭圆交于不同两点

(1)求椭圆的标准方程

(2)若的取值范围

【答案】(1);(2).

【解析】

试题分析:(1)由焦点三角形的周长为,可得的值,运用离心率公式和的关系,解方程可得,进而得到椭圆方程;(2)由题意可得,设,运用向量共线的坐标表示和直线方程代入椭圆方程,运用韦达定理,可得代入再由不等式的性质,可得所求范围.

试题解析:(1)由已知可得以椭圆的短轴的两端点和两焦点所围成的四边形的周长为

椭圆的标准方程为

(2)根据已知得,设

由已知得,即

代入上式可得

所以,得,代入

整理得的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,太湖一个角形湖湾 常数为锐角. 拟用长度为为常数的围网围成一个养殖区,有以下两种方案可供选择:

方案一 如图1,围成扇形养殖区,其中

方案二 如图2,围成三角形养殖区,其中

1求方案一中养殖区的面积

2求方案二中养殖区的最大面积

3为使养殖区的面积最大,应选择何种方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若函数处取得极值,求实数的值;

)在()的条件下,函数 (其中为函数的导数)的图像关于直线对称,求函数单调区间;

)在()的条件下,若对任意的,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足 ),称数列数列,记为其前项和.

(Ⅰ)写出一个满足,且数列

(Ⅱ)若 ,证明:若数列是递增数列,则;反之,若,则数列是递增数列;

(Ⅲ)对任意给定的整数),是否存在首项为0的数列,使得?如果存在,写出一个满足条件的数列;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求的展开式中的系数及展开式中各项系数之和;

(2)从0,2,3,4,5,6这6个数字中任取4个组成一个无重复数字的四位数,求满足条件的四位数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高几何?” 意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)讨论函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列正确命题有__________

①“”是“”的充分不必要条件

②如果命题“”为假命题,则中至多有一个为真命题

③设,若,则的最小值为

④函数上存在,使,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某种微生物的生长规律,需要了解环境温度)对该微生物的活性指标的影响,某实验小组设计了一组实验,并得到如表的实验数据:

环境温度

1

2

3

4

5

6

7

活性指标

(Ⅰ)由表中数据判断关于的关系较符合还是,并求关于的回归方程(取整数);

(Ⅱ)根据(Ⅰ)中的结果分析:若要求该种微生物的活性指标不能低于,则环境温度应不得高于多少

附:

查看答案和解析>>

同步练习册答案