精英家教网 > 高中数学 > 题目详情
10.求证:cos8x-sin8x+$\frac{1}{4}$sin2xsin4x=cos2x.

分析 观察等式,只要从左边入手,利用三角函数的倍角公式依次化简.

解答 证明:左边=(cos4x+sin4x)(cos4x-sin4x)+$\frac{1}{4}$sin2xsin4x
=[(cos2x+sin2x)2-2sin2xcos2x](cos2x+sin2x)(cos2x-sin2x)+$\frac{1}{4}$sin2xsin4x
=(1-$\frac{1}{2}$sin22x)cos2x+$\frac{1}{4}$sin2xsin4x
=cos2x-$\frac{1}{2}$sin22xcos2x+$\frac{1}{2}$sin22xcos2x
=cos2x=右边.

点评 本题考查了利用三角函数的倍角公式化简三角函数式,熟练运用公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x-1+$\frac{a}{{e}^{x}}$(a∈R,e为自然对数的底数).若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:sin40°(1-$\sqrt{3}$tan20°)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知4sinA=1-cosA,则tan$\frac{A}{2}$=0或4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.参数方程$\left\{\begin{array}{l}{x=se{c}^{2}θ+cs{c}^{2}θ}\\{y=cotθ+tanθ}\end{array}\right.$化为普通方程是y2=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知[(1+0.75%)n-1]÷[0.75%×(1+0.75%)n]=99,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知tanα+$\frac{1}{tanα}$=$\frac{5}{2}$,α∈($\frac{π}{4},\frac{π}{2}$),则sin(2α-$\frac{π}{4}$)的值为(  )
A.-$\frac{7\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.-$\frac{\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量(1,-cosθ)与(sinθ,1)(-$\frac{π}{2}$<θ<$\frac{π}{2}$)垂直,向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,n)(n>1),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ.
(1)求$\overrightarrow{b}$;
(2)若$\overrightarrow{c}$与$\overrightarrow{b}$同向,且$\overrightarrow{a}$与$\overrightarrow{c}$-$\overrightarrow{a}$垂直,求$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足a1>2,an+1-1=an(an-1)(n∈N*),且$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2012}}$=1,则a2013-4a1的最大值为-12.

查看答案和解析>>

同步练习册答案