精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

已知函数,其中e是自然数的底数,

(1)当时,解不等式

(2)当时,求正整数k的值,使方程在[k,k+1]上有解;

(3)若在[-1,1]上是单调增函数,求的取值范围.

 

【答案】

(1)   (2)1  (3)

【解析】

试题分析:⑴因为,所以不等式即为

又因为,所以不等式可化为

所以不等式的解集为

⑵当时,方程即为,由于,所以不是方程的解,

所以原方程等价于,令

因为对于恒成立,

所以内是单调增函数,

, ,

所以方程有且只有1个实数根, 在区间 ,

所以整数的值为 1.

①  当时,上恒成立,当且仅当

取等号,故符合要求;

②当时,令,因为

所以有两个不相等的实数根,不妨设

因此有极大值又有极小值.

,因为,所以内有极值点,

上不单调.

,可知

因为的图象开口向下,要使上单调,因为

必须满足所以.

综上可知,的取值范围是

考点:利用导数求闭区间上函数的最值;函数的单调性与导数的关系.

点评:本题考查的知识是利用导数求闭区间上函数的最值,函数的单调性与导数的关系,熟练掌握导数法在求函数单调性,最值,极值的方法是解答的关键.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案