精英家教网 > 高中数学 > 题目详情
11.已知数列{an}为等比数列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,则a2014(a2012+2a2014+a2016)的值为4π2

分析 ${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,表示半圆:$y=\sqrt{4-{x}^{2}}$(0≤x≤2)的面积,可得${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=2π.再利用等比数列的性质即可得出.

解答 解:∵${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,表示半圆:$y=\sqrt{4-{x}^{2}}$(0≤x≤2)的面积,∴${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=2π.
∴a2013+a2015=2π,
则a2014(a2012+2a2014+a2016)=${a}_{2013}^{2}$+$2{a}_{2014}^{2}$+${a}_{2015}^{2}$=$({a}_{2013}+{a}_{2015})^{2}$=4π2
故答案为:4π2

点评 本题考查了微积分基本定理、等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.
(1)求证:平面AA1C⊥平面BA1C.
(2)求几何体A1-ABC的体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,⊙O为△ABC的外接圆,且AB=AC,过点A的直线交⊙O于D,交BC的延长线于F,DE是BD的延长线,连接CD.
(1)求证:∠EDF=∠CDF;
(2)求证:AB2=AF•AD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)是奇函数,且在(0,+∞)内是单调递增函数,若f(3)=0,则不等式xf(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y+1≥0}\\{3x-y-1≤0}\end{array}\right.$,则z=x-y的最大值为(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知圆的两条弦AB,CD,延长AB,CD交于圆外一点E,过E作AD的平行线交CB的延长线于F,过点F作圆的切线FG,G为切点.求证:
(I)△EFC∽△BFE;
(Ⅱ)FG=FE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}|lgx|,x>0\\-{x^2}-2x,x≤0\end{array}$,则函数y=2[f(x)]2-3f(x)+1有7个不同的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈(0,+∞),x2≥x-1,则命题p的否定形式是(  )
A.¬p:?x0∈(0,+∞),x02≥x0-1B.¬p:?x0∈(-∞,+0),x02≥x0-1
C.¬p:?x0∈(0,+∞),x02<x0-1D.¬p:?x0∈(-∞,+0),x02<x0-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足$f(3x-1)<f(\frac{1}{3})$的x的取值范围是($\frac{2}{9}$,$\frac{4}{9}$).

查看答案和解析>>

同步练习册答案