ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬¶¯µãPÔÚÍÖÔ²C1£º
x2
2
+y2=1ÉÏ£¬¶¯µãQÊǶ¯Ô²C2£ºx2+y2=r2£¨1£¼r£¼2£©ÉÏÒ»µã£®
£¨1£©ÇóÖ¤£º¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÉèÍÖÔ²C1ÉϵÄÈýµãA£¨x1£¬y1£©£¬B£¨1£¬
2
2
£©£¬C£¨x2£¬y2£©ÓëµãF£¨1£¬0£©µÄ¾àÀë³ÉµÈ²îÊýÁУ¬Ï߶ÎACµÄ´¹Ö±Æ½·ÖÏßÊÇ·ñ¾­¹ýÒ»¸ö¶¨µãΪ£¿Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôÖ±ÏßPQÓëÍÖÔ²C1ºÍ¶¯Ô²C2¾ùÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
£¨1£©Ö¤Ã÷£ºÉ趯µãP£¨x0£¬y0£©£¬Ôò
x02
2
+y02=1
£¬
ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈΪ£º
(x0-1)2+y02
|x0-2|
=
(x0-1)2+y02
(x0-2)2
=
(x0-1)2+1-
x02
2
(x0-2)2
=
2
2
£¬
¶øa=
2
£¬c=1£¬ËùÒÔÀëÐÄÂÊe=
2
2
£¬
¹Ê¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©¿ÉµÃ|AF|=
2
2
(2-x1)
£¬|BF|=
2
2
(2-1)
£¬|CF|=
2
2
(2-x2)
£¬
ÒòΪ2|BF|=|AF|+|CF|£¬
ËùÒÔ
2
2
(2-x1)+
2
2
(2-x2)
=2¡Á
2
2
(2-1)
£¬¼´µÃx1+x2=2£¬
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓÐ
x12
2
+y12=1
£¬
x22
2
+y22=1
£¬Á½Ê½Ïà¼õÕûÀíµÃ£º
kAC=
y2-y1
x2-x1
=-
x2+x1
2(y2+y1)
=-
1
y2+y1
£¬
ÉèÏ߶ÎACµÄÖе㣨m£¬n£©£¬¶øm=
x1+x2
2
=1£¬n=
y1+y2
2
£¬
ËùÒÔÓëÖ±ÏßAC´¹Ö±µÄÖ±ÏßбÂÊΪk¡äAC=y2+y1=2n£¬
ÔòAC´¹Ö±Æ½·ÖÏß·½³ÌΪy-n=2n£¨x-1£©£¬¼´y=n£¨2x-1£©¾­¹ý¶¨µã£¨
1
2
£¬0£©£»
£¨3£©ÒÀÌâÒâÖª£¬Ö±ÏßPQµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉÓÚÖ±Ïß·½³ÌPQÓëÍÖÔ²C1ÏàÇУ¬µãPΪÇе㣬´Ó¶øÓÐ
ÓÉ
y1=kx1+m
x12
2
+y12=1
µÃ(2k2+1)x12+4kmx1+2(m2-1)=0 £¬
¹Ê¡÷=£¨4km£©2-4¡Á2£¨m2-1£©£¨2k2+1£©=0£¬´Ó¶ø¿ÉµÃm2=1+2k2£¬x1=-
2k
m
¢Ù£¬
Ö±ÏßPQÓëÔ²C2ÏàÇУ¬Ôò
|m|
1+k2
=r
£¬µÃm2=r2£¨1+k2£©¢Ú£¬
ÓÉ¢Ù¢ÚµÃk2=
r2-1
2-r2
£¬ÇÒ|PQ|2=|OP|2-|OQ|2=x12+y12-r2=x12+£¨1-
x12
2
£©-r2
=1+
x12
2
-r2=1+
2k2
1+2k2
-r2=3-r2-
2
r2
¡Ü3-2
2
=(
2
-1)2
£¬¼´|PQ|¡Ü
2
-1£¬
µ±ÇÒ½öµ±r2=
2
¡Ê(1£¬4)
ʱȡµÈºÅ£¬
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óֵΪ
2
-1£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÔ²ÐÄÔÚÖ±Ïßy=x+4ÉÏ£¬°ë¾¶Îª2
2
µÄÔ²C¾­¹ý×ø±êÔ­µãO£¬ÍÖÔ²
x2
a2
+
y2
9
=1(a£¾0)
ÓëÔ²CµÄÒ»¸ö½»µãµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ10£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©ÈôFΪÍÖÔ²µÄÓÒ½¹µã£¬µãPÔÚÔ²CÉÏ£¬ÇÒÂú×ãPF=4£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Èñ½Ç¦ÁºÍ¶Û½Ç¦ÂµÄÖձ߷ֱðÓ뵥λԲ½»ÓÚA£¬BÁ½µã£®ÈôµãAµÄºá×ø±êÊÇ
3
5
£¬µãBµÄ×Ý×ø±êÊÇ
12
13
£¬Ôòsin£¨¦Á+¦Â£©µÄÖµÊÇ
16
65
16
65
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Èô½¹µãÔÚxÖáµÄÍÖÔ²
x2
m
+
y2
3
=1
µÄÀëÐÄÂÊΪ
1
2
£¬ÔòmµÄֵΪ
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©ÖÝÈýÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA£¨0£¬1£©£¬B£¨0£¬-1£©£¬C£¨t£¬0£©£¬D(
3t
£¬0)
£¬ÆäÖÐt¡Ù0£®ÉèÖ±ÏßACÓëBDµÄ½»µãΪP£¬Ç󶯵ãPµÄ¹ì¼£µÄ²ÎÊý·½³Ì£¨ÒÔtΪ²ÎÊý£©¼°ÆÕͨ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶«Ý¸Ò»Ä££©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó½¹µãΪF1£¨-1£¬0£©£¬ÇÒÍÖÔ²CµÄÀëÐÄÂÊe=
1
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²CµÄÉÏ϶¥µã·Ö±ðΪA1£¬A2£¬QÊÇÍÖÔ²CÉÏÒìÓÚA1£¬A2µÄÈÎÒ»µã£¬Ö±ÏßQA1£¬QA2·Ö±ð½»xÖáÓÚµãS£¬T£¬Ö¤Ã÷£º|OS|•|OT|Ϊ¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£»
£¨3£©ÔÚÍÖÔ²CÉÏ£¬ÊÇ·ñ´æÔÚµãM£¨m£¬n£©£¬Ê¹µÃÖ±Ïßl£ºmx+ny=2ÓëÔ²O£ºx2+y2=
16
7
ÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ¡÷OABµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê¼°¶ÔÓ¦µÄ¡÷OABµÄÃæ»ý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸