精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题,其中错误命题的个数为( )

(1)直线与平面不平行,则与平面内的所有直线都不平行;

(2)直线与平面不垂直,则与平面内的所有直线都不垂直;

(3)异面直线不垂直,则过的任何平面与都不垂直;

(4)若直线共面,直线共面,则共面

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

分别利用空间点线面位置关系的公理和定理对四个命题逐一判断其是否为错误命题,由此得出正确的选项.

对于(1),若直线在平面内,这时直线和平面不平行,但是平面内有直线和是平行的,故(1)错误.对于(2), 若直线在平面内,这时直线和平面不垂直,但是平面内有直线和是垂直的,故(2)错误.对于(3),根据线面垂直的定义可知,(3)是正确的.对于(4),有可能是异面直线,故(4)错误.终上所述,有个命题是错误命题,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面四边形中, , 为等边三角形,现将沿翻折得到四面体,点分别为的中点.

(Ⅰ)求证:四边形为矩形;

(Ⅱ)当平面平面时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通安全法有规定:机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过马路,应当避让.我们将符合这条规定的称为“礼让斑马线”,不符合这条规定的称为“不礼让斑马线”.下表是六安市某十字路口监控设备所抓拍的5个月内驾驶员“不礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

“不礼让斑马线”的驾驶员人数

120

105

100

85

90

1)根据表中所给的5个月的数据,可用线性回归模型拟合的关系,请用相关系数加以说明;

2)求“不礼让斑马线”的驾驶员人数关于月份之间的线性回归方程;

3)若从45月份“不礼让斑马线”的驾驶员中分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的2人分别来自两个月份的概率;

参考公式:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题:

在定义域上单调递增;

②若锐角满足,则

是定义在上的偶函数,且在上是增函数,若,则

④函数的一个对称中心是

其中真命题的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值.

(1)求的值与函数的单调区间;

(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的零点;

(2)当,求函数上的最大值;

(3)对于给定的正数a,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了201950位农民的年收入并制成如下频率分布直方图:

1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入近似为样本方差,经计算得,利用该正态分布,求:

i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附参考数据:,若随机变量X服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点.设函数abkR.

(1)若x=1处的切线.①当有两个极值点,且满足·=1时,求b的值及a的取值范围;②当函数的图象只有一个交点,求a的值;

(2)若对满足函数的图象总有三个交点P,Q,R”的任意突数k,都有PQ=QR成立,求abk满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.

(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;

(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

查看答案和解析>>

同步练习册答案