精英家教网 > 高中数学 > 题目详情

【题目】已知的内角的对边分别为内一点,若分别满足下列四个条件:

则点分别为的(

A.外心、内心、垂心、重心B.内心、外心、垂心、重心

C.垂心、内心、重心、外心D.内心、垂心、外心、重心

【答案】D

【解析】

先考虑直角,可令,可得,设,由向量的坐标表示和三角函数的恒等变换公式计算可判断①③④为三角形的内心、外心和重心;考虑等腰,底角为,设,由向量的坐标表示和向量垂直的条件,可判断②为三角形的垂心.

先考虑直角,可令

可得,设

,即为

即有,解得

即有轴的距离为1的平分线上,且到的距离也为1

的内心;

即为

可得,解得

,故的外心;

,可得

即为,解得

的中点,即分中线比为

的重心;

考虑等腰,底角为

即为

可得,解得

,由,即有

的垂心.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面上的线段及点,任取上一点,线段长度的最小值称为点到线段的距离,记作.请你写出到两条线段距离相等的点的集合,其中是下列两组点中的一组.对于下列两种情形,只需选做一种,满分分别是① 3分;② 5分.① ;② .你选择第_____种情形,到两条线段距离相等的点的集合_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题;命题函数在区间上有零点.

1)当时,若为真命题,求实数的取值范围;

2)若命题是命题的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率,左、右焦点分别为 ,点满足: 在线段的中垂线上.

(Ⅰ)求椭圆的方程;

(Ⅱ)若斜率为)的直线轴、椭圆顺次相交于点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若不等式时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:

连锁店

A

B

C

售价x(元)

80

86

82

88

84

90

销量y(元)

88

78

85

75

82

66

(1)分别以三家连锁店的平均售价与平均销量为散点,A店对应的散点为,求出售价与销量的回归直线方程;

(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40/,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)

:,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是平行四边形,,且底面.

(1)证明:平面平面

(2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且设定点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其准圆方程;

(2)设椭圆短轴的一个端点为,长轴的一个端点为,点 准圆上一动点,求三角形面积的最大值.

查看答案和解析>>

同步练习册答案