精英家教网 > 高中数学 > 题目详情
以下五个命题中,正确命题的个数是________.
① 不共面的四点中,其中任意三点不共线;
② 若
③ 对于四面体ABCD,任何三个面的面积之和都大于第四个面的面积;
④ 对于四面体ABCD,相对棱AB CD 所在的直线是异面直线;
⑤ 各个面都是三角形的几何体是三棱锥。
3

试题分析:对于① 不共面的四点中,其中任意三点不共线,成立。
对于② 若,可能相交,因此错误
对于③ 对于四面体ABCD,任何三个面的面积之和都大于第四个面的面积,成立
对于④ 对于四面体ABCD,相对棱AB CD 所在的直线是异面直线;,成立
对于⑤ 各个面都是三角形的几何体是三棱锥,不一定还可能是正20面体,错误。故答案为3.
点评:解决该试题的关键是熟练的运用线面和线线的判定定理和性质定理来判定,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β为 ,动点P.Q分别在面α.β内,P到β的距离为,Q到α的距离为,则P. Q两点之间距离的最小值为   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在四棱锥中,底面的中点.

(Ⅰ)证明
(Ⅱ)证明平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正四棱柱中,分别是的中点,则以下结论中不成立的是(   )
A.垂直B.垂直
C.异面D.异面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是平面,是直线,给出下列命题,其中正确的命题的个数是(      )
( 1 )若,则
( 2 )若,则
( 3 )如果是异面直线,那么相交
( 4 )若,且,则.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面α,和两条不重合的直线m,n,则下列四种说法正确的为(    )
A.若m∥n,nα,则m∥α
B.若m⊥n,m⊥α,则n∥α
C.若mα,n,α∥,则m,n为异面直线
D.若α⊥,m⊥α,n⊥,则m⊥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在多面体ABCDE中,,,是边长为2的等边三角形,CD与平面ABDE所成角的正弦值为.

(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分别是棱AB、BC、CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  )
A.              B.             C.             D.

查看答案和解析>>

同步练习册答案