精英家教网 > 高中数学 > 题目详情

【题目】如图,上海迪士尼乐园将一三角形地块ABC的一角APQ开辟为游客体验活动区.已知∠A=120°,AB、AC的长度均大于200米.设AP=x,AQ=y,且AP,AQ总长度为200米.

(1)当x,y为何值时?游客体验活动区APQ的面积最大,并求最大面积;
(2)当x,y为何值时?线段|PQ|最小,并求最小值.

【答案】
(1)解:因为:AP=x,AQ=y且x+y=200

所以:

当且仅当x=y=100时,等号成立.

所以:当x=y=100米时, 平方米


(2)解:因为:PQ2=x2+y2﹣2xycos120°

=x2+y2+xy…8分

=x2+(200﹣x)2+x(200﹣x)

=x2﹣200x+40000

=(x﹣100)2+30000.

所以:当x=100米,线段 米,此时,y=100米


【解析】(1)由已知利用三角形面积公式,基本不等式可得 ,即可得解.(2)利用已知及余弦定理可得PQ2=x2+y2﹣2xycos120°=(x﹣100)2+30000,根据二次函数的图象和性质即可解得线段|PQ|最小值.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线.

(1)若抛物线和直线没有公共点,求的取值范围;

(2)若,且抛物线和直线只有一个公共点时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项都是1的两个数列{},{}(≠0,n∈N*)满足

(1)令,求数列{}的通项公式;

(2)若,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题个数是 ( )

. 如果共面 也共面,共面;

.已知直线a的方向向量与平面,若// ,则直线a// ;

③若共面,则存在唯一实数使,反之也成立;

.对空间任意点O与不共线的三点ABC,若=x+y+z

(其中xyz∈R),则PABC四点共面

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,

(1)证明: 平面

(2)若是棱的中点,在棱上是否存在一点,使DE∥平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx, ), =(cosx,﹣1).
(1)当 时,求tan(x﹣ )的值;
(2)设函数f(x)=2( + ,当x∈[0, ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数是奇函数,求实数的值;

(2)在在(1)的条件下,判断函数与函数的图像公共点个数,并说明理由;

(3)当时,函数的图象始终在函数的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ +2﹣2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+ + +…+ (2n+1)+ (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将一副三角板拼接,使它们有公共边BC,且使两个三角形所在的平面互相垂直,若

∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6。

⑴ 求证:平面平面ACD;

⑵ 求二面角的平面角的正切值;

⑶ 设过直线AD且与BC平行的平面为,求点B到平面的距离。

查看答案和解析>>

同步练习册答案