精英家教网 > 高中数学 > 题目详情

【题目】已知是椭圆T.上的两点,且A点位于第一象限.Ax轴的垂线,垂足为点C,点D满足,延长T于点.

1)设直线的斜率分别为.

i)求证:

ii)证明:是直角三角形;

2)求的面积的最大值.

【答案】1)(i)见解析(ii)见解析(2

【解析】

1)(i)求出点D的坐标,用表示出即可得证;(ii)利用都在T上可将两点坐标代入椭圆方程,两式相减并通过变形证明,由(i)可推出,则,得证;(2)直线AE的方程代入椭圆方程整理得关于x的一元二次方程,利用韦达定理求出,由求出面积的表达式,利用换元法及对勾函数的单调性即可求得面积的最大值.

1)(i)由题意可得,所以

,因此.

ii)因为都在T上,

所以,从而

.

,所以

由(i,则,即.

是直角三角形.

2)由(1)得,

将直线代入椭圆T,并整理可得

所以.

因为,所以.

,则,等号当且仅当时成立.

从而

因为上单调递增,所以时,取得最小值

时,取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)若函数存在两个极值点(其中),且的取值范围为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中记载:刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱EF//平面ABCDEF与平面ABCD的距离为2,该刍甍的体积为(

A.6B.C.D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为双曲线的一个焦点,过的一条渐近线的垂线,垂足为点的另一条渐近线交于点,若,则的离心率为(

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的底面边长为2 是侧棱的中点.

1证明:平面平面

2若平面与平面所成锐角的大小为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.

1)求椭圆的方程;

2)若圆上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,四边形是菱形,E上一点,且,设.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆

(1)若椭圆的离心率为,求的值;

(2)若过点任作一条直线与椭圆交于不同的两点,在轴上是否存在点,使得, 若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

1)求的值;

2)记表示事件从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于,估计的概率;

3)在抽取的名学生中,规定:比赛成绩不低于分为优秀,比赛成绩低于分为非优秀.请将下面的列联表补充完整,并判断是否有的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

女生

合计

参考公式及数据:

查看答案和解析>>

同步练习册答案