精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , 满足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求数列{an}的通项公式.

【答案】
(1)

解:由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:

S2=4a3﹣20 ①

又S3=S2+a3=15 ②

联立①②解得:a3=7.

再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:

a1=2a2﹣7 ③

又S3=a1+a2+7=15 ④

联立③④得:a2=5,a1=3.

∴a1,a2,a3的值分别为3,5,7


(2)

解:∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.

由此猜测an=2n+1.

下面由数学归纳法证明:

①当n=1时,a1=3=2×1+1成立.

②假设n=k时结论成立,即ak=2k+1.

那么,当n=k+1时,

由Sn=2nan+1﹣3n2﹣4n,得

两式作差得:

= =2(k+1)+1.

综上,当n=k+1时结论成立.

∴an=2n+1.


【解析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3 , 然后把递推式中n取1,再结合S3=15联立方程组求得a1 , a2;(2)由(1)中求得的a1 , a2 , a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.
【考点精析】关于本题考查的数列的通项公式,需要了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某零售店近5个月的销售额和利润额资料如下表:

商店名称

销售额/千万元

3

5

6

7

9

利润额/百万元

2

3

3

4

5

(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;

(2)用最小二乘法计算利润额关于销售额的回归直线方程;

(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).

[参考公式:]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是平行四边形,的中点,且有,现以为折痕,将折起,使得点到达点的位置,且

1)证明:平面

2)若四棱锥的体积为,求四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和

若三角形的三边长分别为,求此三角形的面积;

探究数列中是否存在相邻的三项,同时满足以下两个条件:此三项可作为三角形三边的长;此三项构成的三角形最大角是最小角的2倍若存在,找出这样的三项,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列三个命题中

“k=1”函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;

“a=3”直线ax+2y+3a=0与直线3x+(a-1)y=a-7相互垂直的充要条件;

双曲线上任意点M到两条渐近线距离的积为定值的逆否命题

其中是真命题的为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,其中k<﹣2.
(1)求函数f(x)的定义域D(用区间表示);
(2)讨论函数f(x)在D上的单调性;
(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且成等差数列

1)若,求的面积

2)若成等比数列,试判断的形状

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.

(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;

(2)若已从年龄在的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一位数学老师在黑板上写了三个向量,其中都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“平行,且垂直”,乙回答:“平行”,丙回答:“不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测的值不可能为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案