精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )
A.(﹣
B.(
C.(
D.(

【答案】A
【解析】解:由题意可得:
存在x0∈(﹣∞,0),满足x02+ex0 =(﹣x02+ln(﹣x0+a),
即ex0 ﹣ln(﹣x0+a)=0有负根,
∵当x趋近于负无穷大时,ex0 ﹣ln(﹣x0+a)也趋近于负无穷大,
且函数h(x)=ex ﹣ln(﹣x+a)为增函数,
∴h(0)=e0 ﹣lna>0,
∴lna<ln
∴a<
∴a的取值范围是(﹣∞, ),
故选:A
由题意可得ex0 ﹣ln(﹣x0+a)=0有负根,函数h(x)=ex ﹣ln(﹣x+a)为增函数,由此能求出a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上的增函数.当实数取最大值时,若存在点,使得过点的直线与曲线围成两个封闭图形,且这两个封闭图形的面积总相等,则点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线C: ﹣y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).

(1)求双曲线C的方程;
(2)过C上一点P(x0 , y0)(y0≠0)的直线l: ﹣y0y=1与直线AF相交于点M,与直线x= 相交于点N.证明:当点P在C上移动时, 恒为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=

(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;
(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1 , x2 , x3 , 随机变量X表示x1 , x2 , x3中的最大数,求X的概率分布和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,数列满足:.

(1)求

(2)求数列的通项公式及其前项和

(3)记集合,若的子集个数为32,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,点的中点.

(1)求证: 平面

(2)若平面 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知标准方程下的椭圆的焦点在轴上,且经过点它的一个焦点恰好与抛物线的焦点重合.椭圆的上顶点为过点的直线交椭圆于两点,连接,记直线的斜率分别为.

(1)求椭圆的标准方程;

(2)求的值.

查看答案和解析>>

同步练习册答案