精英家教网 > 高中数学 > 题目详情
(2012•韶关二模)在△ABC中,三个内角A,B,C的对边分别为a,b,c,其中c=2,且
cosA
cosB
=
b
a
=
3
1

(1)求证:△ABC是直角三角形;
(2)设圆O过A,B,C三点,点P位于劣弧
AC
上,∠PAB=θ,用θ的三角函数表示三角形△PAC的面积,并求△PAC面积最大值.
分析:(1)利用正弦定理化简已知的等式
cosA
cosB
=
b
a
,整理后再利用二倍角的正弦函数公式化简得到sin2A=sin2B,再利用正弦函数的图象与性质得到A与B相等或A与B互余,由b与a的比值不相等,得到A不等于B,故A与B互余,可得出C为直角,则此三角形为直角三角形,得证;
(2)由三角形ABC为直角三角形,根据a与b的比值,以及c的值,利用勾股定理求出a与b的值,再由一条直角边等于斜边的一半,可得出此直角边所对的角为30°,即∠BAC为30°,又∠PAB=θ,用∠PAB-∠BAC表示出∠PAC,同时在直角三角形PAB中,由AB的长及∠PAB=θ,利用锐角三角函数定义表示出PA,由AC,PA及sin∠PAC,利用三角形的面积公式表示出三角形APC的面积,利用特殊角的三角函数值及两角和与差的正弦函数公式化简,整理后利用二倍角的正弦、余弦函数公式化简,最后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据θ的范围,求出这个角的范围,根据正弦函数的图象与性质可得出正弦函数的值域,进而确定出面积的最大值.
解答:解:(1)由正弦定理得:
a
sinA
=
b
sinB
得:
b
a
=
sinB
sinA

cosA
cosB
=
b
a

cosA
cosB
=
sinB
sinA
,整理为sinAcosA=sinBcosB,即sin2A=sin2B,
∴2A=2B或2A+2B=π,即A=B或A+B=
π
2

b
a
=
3
1
,∴A=B舍去,
由A+B=
π
2
可知:C=
π
2

则△ABC是直角三角形;…(6分)

(2)由△ABC是直角三角形,
b
a
=
3
1

设a=k,则b=
3
k,又c=2,
根据勾股定理得:k2+3k2=4,即k2=1,
解得:k=1,则a=1,b=
3
,…(7分)
∵直角三角形ABC中,a=
1
2
c,
∴∠BAC=
π
6

由圆周角定理得到△PAB为直角三角形,又∠PAB=θ,
∴PA=AB•cosθ=2cosθ,
∴S△PAC=
1
2
PA•AC•sin(θ-
π
6
)=
1
2
•2cosθ•
3
sin(θ-
π
6
)=
3
cosθsin(θ-
π
6
)…(9分)
=
3
cosθ(
3
2
sinθ-
1
2
cosθ)=
3
4
3
sin2θ-cos2θ)-
3
4
=
3
2
sin(2θ-
π
6
)-
3
4
,…(12分)
π
6
<θ<
π
2
,∴
π
6
<2θ-
π
6
5
6
π

2θ-
π
6
=
π
2
,即θ=
π
3
时,S△PAC最大值等于
3
4
.…(14分)
点评:此题考查了正弦定理,两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,三角形的面积公式,正弦函数的定义域与值域,以及直角三角形的性质,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•韶关二模)数列{an}对任意n∈N*,满足an+1=an+1,a3=2.
(1)求数列{an}通项公式;
(2)若bn=(
13
)an+n
,求{bn}的通项公式及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关二模)已知A是单位圆上的点,且点A在第二象限,点B是此圆与x轴正半轴的交点,记∠AOB=α,若点A的纵坐标为
3
5
.则sinα=
3
5
3
5
;tan(π-2α)=
24
7
24
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关二模)已知R是实数集,M={x|x2-2x>0},N是函数y=
x
的定义域,则N∩CRM=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关二模)定义符号函数sgnx=
1,x>0
0,x=0
-1,x<0
,设f(x)=
sgn(
1
2
-x)+1
2
•f1(x)+
sgn( x-
1
2
)+1 
2
•f2(x),x∈[0,1],若f1(x)=x+
1
2
,f2(x)=2(1-x),则f(x)的最大值等于(  )

查看答案和解析>>

同步练习册答案