精英家教网 > 高中数学 > 题目详情

设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),y=f(x)图象的一个对称中心到最近的对称轴的距离为.

(1)求ω的值;

(2)f(x)在区间[π,]上的最大值和最小值.

 

【答案】

(1) ω=1 (2) ,-1

【解析】

:(1)f(x)=-sin2ωx-sinωxcosωx

=-·-sin2ωx

=cos2ωx-sin2ωx

=-sin(2ωx-).

因为图象的一个对称中心到最近的对称轴的距离为,

又ω>0,

所以=4×,

因此ω=1.

(2)(1)f(x)=-sin(2x-).

当π≤x,2x-.

所以-sin(2x-)1.

因此-1f(x).

f(x)在区间[π,]上的最大值和最小值分别为,-1.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)设函数f(x)=
1
3
ax3+bx+cx(a≠0)
,已知a<b<c,且0≤
b
a
<1
,曲线y=f(x)在x=1处取极值.
(Ⅰ)如果函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(Ⅱ)如果当x≥k(k是与a,b,c无关的常数)时,恒有f(x)+a<0,求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)设函数f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常数且a∈(0,1).
(1)当a=
1
2
时,求f(f(
1
3
));
(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[
1
3
1
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
ax3+bx2+cx(a<b<c)
,其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.
(1)求证:0≤
b
a
<1

(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•崇明县一模)设函数f(x)=cos(2x+
π
3
)+sin2x

(1)求函数f(x)的最大值和最小正周期;
(2)设A,B,C为△ABC的三个内角,f(
C
2
)=-
1
4
,且C为锐角,S△ABC=5
3
,a=4,求c边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)设函数f(x)=cos(2x+
π
3
)+
3
sin2x

(1)求函数f(x)的最大值和及相应的x的值;
(2)设A,B,C为△ABC的三个内角,f(
C
2
-
π
12
)=
3
2
S△ABC=5
3
,a=4
,求角C的大小及b边的长.

查看答案和解析>>

同步练习册答案