精英家教网 > 高中数学 > 题目详情
f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n
(n∈N*)
,则f(n+1)-f(n)=(  )
分析:根据题中所给式子,求出f(n+1)和f(n),再两者相减,即得到f(n+1)-f(n)的结果.
解答:解:根据题中所给式子,得f(n+1)-f(n)
=
1
(n+1)+1
+
1
(n+1)+2
+
1
(n+1)+3
+…+
1
3(n+1)
-(
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n

=
1
3n+1
+
1
3n+2
+
1
3n+3
-
1
n+1

=
1
3n+1
+
1
3n+2
-
2
3n+3

故选C.
点评:本题考查函数的表示方法,明确从n到n+1项数的变化是关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>1,定义f(n)=
1
n+1
+
1
n+2
+…+
1
2n
,如果对任意的n∈N*且n≥2,不等式12f(n)+7logab>7loga+1b+7(a>0且a≠1)恒成立,则实数b的取值范围是(  )
A、(2,
29
17
)
B、(0,1)
C、(0,4)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
(n∈N*)
,那么f(n)-m≥0对于n(n∈N*,n≥2)恒成立,则m的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,则
lim
n→+∞
n2[f(n+1)-f(n)]
=
1
4
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n
(n∈N*)
,则f(n+1)-f(n)=(  )
A.
1
3n+1
B.
1
3n+2
C.
1
3n+1
+
1
3n+2
-
2
3n+3
D.
1
3n+1
+
1
3n+2

查看答案和解析>>

同步练习册答案