精英家教网 > 高中数学 > 题目详情
8.在空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,若AC=BD=2,且AC与BD成 60°,则四边形EFGH的面积为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}}}{8}$D.$\frac{{\sqrt{3}}}{2}$

分析 如图所示,由E、F、G、H分别是AB、BC、CD、DA的中点,利用三角形中位线定理可得四边形EFGH是平行四边形,同理可得$EF=GH=\frac{1}{2}$AC,可得四边形EFGH是菱形.根据AC与BD成 60°,可得∠FEH=60°或120°.可得四边形EFGH的面积.

解答 解:如图所示,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EH∥FG∥BD,EH=FH=$\frac{1}{2}$AC=1.
∴四边形EFGH是平行四边形,
同理可得$EF=GH=\frac{1}{2}$AC=1,
∴四边形EFGH是菱形.
∵AC与BD成 60°,∴∠FEH=60°或120°
∴四边形EFGH的面积=$\frac{1}{2}E{F}^{2}sin6{0}^{°}$=$\frac{\sqrt{3}}{4}$.
故选:B.

点评 本题考查了三角形中位线定理、平行四边形与菱形定义、异面直线所成的角,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=4x2-kx-8在[5,20]上是单调递减函数,则实数k的取值范围是(  )
A.(-∞,40]B.[160,+∞)C.[40,160]D.(-∞,40]∪[160,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)若直线l过点(0,2)与圆C相交于点A、B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=4x+a•2x+b,
(1)若f(0)=1,f(-1)=-$\frac{5}{4}$,求f(x)的解析式;
(2)由(1)当0≤x≤2时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:y2=4x.点P是其准线与x轴的交点,过点P的直线L与抛物线C交于A,B两点.
(1)当线段AB的中点在直线x=7上,求直线L的方程;
(2)设F为抛物线C的焦点,当A为线段PB的中点时,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知方程$\frac{x^2}{k-3}+\frac{y^2}{2-k}=1$表示焦点在y轴上的双曲线,则k的取值范围为k<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2{cos^2}(x-\frac{π}{4})-\sqrt{3}$cos2x+1,
(1)求f(x)的图象的对称轴方程;
(2)求f(x)在$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值;
(3)若对任意实数x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数据0.7,1,0.8,0.9,1.1的方差是0.02.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知AD是△ABC内角∠BAC的角平分线.
(1)用正弦定理证明:$\frac{AB}{AC}=\frac{DB}{DC}$;
(2)若∠BAC=120°,AB=2,AC=1,求AD的长.

查看答案和解析>>

同步练习册答案