精英家教网 > 高中数学 > 题目详情
已知y=f (x)是奇函数,当x∈(0,1)时,f(x)=lg
1
1-x
,那么当x∈(-1,0)时,f(x)的
表达式是(  )
A、f(x)=-lg(1-x)
B、f(x)=-lg(1+x)
C、f(x)=lg(1-x)
D、f(x)=lg(1+x)
考点:函数奇偶性的性质,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:由函数为奇函数可得f(-x)=-f(x),设x∈(-1,0),则-x∈(0,1),代入(0,1)上表达式可得f(-x),然后利用奇函数的性质求出f(x)
解答: 解:当x∈(-1,0)时,-x∈(0,1)
∵f(-x)=lg
1
1+x
=-lg(1+x).
∵f(x)为奇函数,f(-x)=-f(x),即-f(x)=-lg(1+x)
当x∈(-1,0)时,f(x)=lg(1+x)
故选D.
点评:本题主要考查利用函数奇偶性求函数的解析式,在解决此类问题时,紧扣奇偶函数的定义,先设出所要求区间上的x,然后利用变形得-x在已知区间,从而可先求出f(-x)的解析式,然后利用函数的奇偶性质求f(x).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

阅读如图的程序框图,若输入的n是100,则输出的变量S的值是(  ) 
A、5 049
B、5 050
C、5 051
D、5 052

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,角B为锐角,且sinB=
2
2
3

(1)求sin2
A+C
2
+cos2B的值;
(2)若b=2,求ac的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是(  )
A、
5
8
B、
1
3
C、
1
8
D、
3
8

查看答案和解析>>

科目:高中数学 来源: 题型:

与直线x-y-2=0平行,且经过直线x-2=0与直线x+y-1=0的交点的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)函数f(x)=lg(2sinx-1)的定义域是
 
;(结果写成区间或集合形式)
(2)已知sin(x-
π
6
)=
3
5
,x∈(0,
π
2
)则cosx的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知一个扇形的圆心角是α=60°,其所在圆的半径R=10cm,求扇形的弧长及扇形的面积;
(2)已知角α的终边经过点P(-4,3),求sin α,cos α,tan α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知当x>0时,函数f(x)=(2a-1)x({a>0,且a≠
1
2
)的值总大于1,则函数y=a2x-x2的单调增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平行六面体ABCD-A1B1C1D1中,|AB|=4,|AD|=3,|AA1|=5,∠BAD=60°,∠BAA1=∠DAA1=60°.
(1)求AC1与AB所成角的余弦值;
(2)求
AC1
AB
上的投影.

查看答案和解析>>

同步练习册答案