¶ÔÓÚÊýÁÐ{An}£ºA1£¬A2£¬A3£¬¡­£¬An£¬Èô²»¸Ä±äA1£¬½ö¸Ä±äA2£¬A3£¬¡­£¬AnÖв¿·ÖÏîµÄ·ûºÅ£¬µÃµ½µÄÐÂÊýÁÐ{an}³ÆΪÊýÁÐ{An}µÄÒ»¸öÉú³ÉÊýÁУ®Èç½ö¸Ä±äÊýÁÐ1£¬2£¬3£¬4£¬5µÄµÚ¶þ¡¢ÈýÏîµÄ·ûºÅ¿ÉÒԵõ½Ò»¸öÉú³ÉÊýÁÐ1£¬-2£¬-3£¬4£¬5£®ÒÑÖªÊýÁÐ{an}ΪÊýÁÐ{
1
2n
}(n¡ÊN*)
µÄÉú³ÉÊýÁУ¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨1£©Ð´³öS3µÄËùÓпÉÄÜÖµ£»
£¨2£©ÈôÉú³ÉÊýÁÐ{an}Âú×㣺S3n=
1
7
(1-
1
8n
)
£¬Çó{an}µÄͨÏʽ£»
£¨3£©Ö¤Ã÷£º¶ÔÓÚ¸ø¶¨µÄn¡ÊN*£¬SnµÄËùÓпÉÄÜÖµ×é³ÉµÄ¼¯ºÏΪ£º{x|x=
2m-1
2n
£¬m¡ÊN*£¬m¡Ü2n-1}
£®
·ÖÎö£º£¨1£©¸ù¾ÝÉú³ÉÊýÁеĶ¨Ò壬¿ÉÖªµ±n=3ʱ£¬a1=
1
2
£¬a2¡¢a3·Ö±ðÔÚ¡À
1
4
¡¢¡À
1
8
ÖÐÈ¡Öµ£®Óɴ˸ø³ö{an}µÄËùÓпÉÄܵÄÇé¿ö£¬¼´¿ÉËã³öS3µÄËùÓпÉÄÜÖµ£»
£¨2£©¸ù¾Ý{an}µÄÇ°3nÏîºÍÓëͨÏîµÄ¹Øϵʽ£¬¿ÉµÃµ±n=1ʱS3=
1
8
£¬µ±n¡Ý2ʱa3n-2+a3n-1+a3n=S3n-S3n-3=
1
8n
£®ÓÉa3n-2¡¢a3n-1¡¢a3nµÄ8ÖÖ×éºÏ¼ÓÒÔÍƶϣ¬¿ÉµÃ£ºµ±ÇÒ½öµ±a3n-2=
4
8n
¡¢a3n-1=-
2
8n
ÇÒa3n=-
1
8n
ʱ£¬ÒÔÉÏÏàµÈ¹Øϵ¿ÉÒÔ³ÉÁ¢£®Óɴ˼´¿ÉµÃµ½Âú×ãÌõ¼þµÄ{an}µÄͨÏʽ£»
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º¢Ùµ±n=1ʱÃüÌâ³ÉÁ¢£»¢Ú¼ÙÉèn=k£¨k¡ÊN*£©Ê±£¬Sk=
2m-1
2k
(m¡ÊN*£¬m¡Ü2k-1)
£¬Ôòµ±n=k+1ʱ£¬Sk+1=Sk¡À
1
2k+1
=
2k+1Sk¡À1
2k+1
=
2(2m-1)¡À1
2k+1
£¨m¡ÊN*£¬m¡Ü2k-1£©£¬´Ó¶øÖ¤³öSk+1=
2m-1
2k+1
£¨m¡ÊN*£¬m¡Ü2k£©£¬¼´ÓÉn=kʱÃüÌâ³ÉÁ¢¿ÉÍƳön=k+1ʱÃüÌâÒ²³ÉÁ¢£®¸ù¾ÝÒÔÉÏÁ½µã£¬¿ÉÒÔÍƶϳöÔ­ÃüÌâ³ÉÁ¢£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬µÃa1=
1
2
£¬|an|=
1
2n
(n¡ÊN*£¬n¡Ý2)
£¬
¡à¸ù¾ÝÉú³ÉÊýÁеĶ¨Ò壬¿ÉµÃa2=¡À
1
4
£¬a3=¡À
1
8
£®
ÓÖ¡ß
1
2
+
1
4
+
1
8
=
7
8
£¬
1
2
+
1
4
-
1
8
=
5
8
£¬
1
2
-
1
4
+
1
8
=
3
8
£¬
1
2
-
1
4
-
1
8
=
1
8
£¬
¡àΪ
1
8
£¬
3
8
£¬
5
8
£¬
7
8
£®
£¨2£©¡ßS3n=
1
7
(1-
1
8n
)
£¬
µ±n=1ʱ£¬a1+a2+a3=S3=
1
7
(1-
1
8
)=
1
8
£¬
µ±n¡Ý2ʱ£¬a3n-2+a3n-1+a3n=S3n-S3n-3=
1
7
(1-
1
8n
)-
1
7
(1-
1
8n-1
)=
1
8n

¡ß{an}ÊÇ{
1
2n
}(n¡ÊN*)
µÄÉú³ÉÊýÁÐ
¡àa3n-2=¡À
1
23n-2
£¬a3n-1=¡À
1
23n-1
£¬a3n=¡À
1
23n
£»
¿ÉµÃa3n-2+a3n-1+a3n=¡À
1
23n-2
¡À
1
23n-1
¡À
1
23n
=
1
8n
(¡À4¡À2¡À1)=
1
8n
(n¡ÊN*)
£¬
ÔÚÒÔÉϸ÷ÖÖ×éºÏÖУ¬µ±ÇÒ½öµ±a3n-2=
4
8n
£¬a3n-1=-
2
8n
£¬a3n=-
1
8n
(n¡ÊN*)
ʱ£¬ÏàµÈ¹Øϵ³ÉÁ¢£®
¡àan=
1
2n
£¬n=3k-2
-
1
2n
£¬n¡Ù3k-2
£¬k¡ÊN*
£®
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùn=1ʱ£¬S1=
1
2
£¬ÃüÌâ³ÉÁ¢£®
¢Ú¼ÙÉèn=k£¨k¡ÊN*£©Ê±ÃüÌâ³ÉÁ¢£¬¼´SkËùÓпÉÄÜÖµ¼¯ºÏΪ£º{x|x=
2m-1
2k
£¬m¡ÊN*£¬m¡Ü2k-1}

ÓɼÙÉèµÃSk=
2m-1
2k
(m¡ÊN*£¬m¡Ü2k-1)
¡­£¨13·Ö£©
Ôòµ±n=k+1ʱ£¬Sk+1=
1
2
¡À
1
22
¡À
1
23
¡À¡­¡À
1
2k
¡À
1
2k+1
=Sk¡À
1
2k+1
=
2k+1Sk¡À1
2k+1
Sk+1=
2k+1Sk¡À1
2k+1
=
2(2m-1)¡À1
2k+1
£¨m¡ÊN*£¬m¡Ü2k-1£©¡­£¨15·Ö£©
¼´Sk+1=
2¡Á(2m-1)-1
2k+1
»òSk+1=
2¡Á(2m)-1
2k+1
£¨m¡ÊN*£¬m¡Ü2k-1£©
¼´Sk+1=
2m-1
2k+1
£¨m¡ÊN*£¬m¡Ü2k£©¡àn=k+1ʱ£¬ÃüÌâ³ÉÁ¢       ¡­£¨17·Ö£©
ÓÉ¢Ù¢Ú£¬n¡ÊN*£¬SnËùÓпÉÄÜÖµ¼¯ºÏΪ{x|x=
2m-1
2n
£¬m¡ÊN*£¬m¡Ü2n-1}
£®
µãÆÀ£º±¾Ìâ¸ø³öÊýÁÐ{An}µÄÉú³ÉÊýÁÐ{an}µÄ¶¨Ò壬ÇóS3µÄ¿ÉÄÜÖµ²¢Ö¤Ã÷SnµÄËùÓпÉÄÜÖµ×é³ÉµÄ¼¯ºÏ£®×ÅÖØ¿¼²éÁËÊýÁеÄͨÏîÓëÇóºÍ¹«Ê½¡¢µÈ±ÈÊýÁеÄͨÏʽÓëÇ°nÏîºÍ¹«Ê½¡¢ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÓëÕýÕûÊýnÓйصÄÃüÌâµÈ֪ʶ£¬ÊôÓÚÄÑÌ⣮ͬʱ¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦¡¢Âß¼­ÍÆÀíÄÜÁ¦Óë·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éÁËת»¯»¯¹éÓë·ÖÀàÌÖÂÛµÄÊýѧ˼ÏëµÄÔËÓã¬ÊÇÒ»µÀ×ÛºÏÐÔ½ÏÇ¿µÄÊÔÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Èô¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐSn=2an-3n£®
£¨1£©ÇóÊýÁÐ{an}µÄÊ×Ïîa1ÓëµÝÍƹØϵʽ£ºan+1=f£¨an£©£»
£¨2£©ÏÈÔĶÁÏÂÃ涨Àí£º¡°ÈôÊýÁÐ{an}ÓеÝÍƹØϵan+1=Aan+B£¬ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1£¬B¡Ù0£¬ÔòÊýÁÐ{an-
B1-A
}
ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ®¡±ÇëÄãÔÚµÚ£¨1£©ÌâµÄ»ù´¡ÉÏÓ¦Óñ¾¶¨Àí£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÇóÊýÁÐ{an}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

10¡¢¶ÔÓÚÊýÁÐ{an}£¨n¡ÊN+£¬an¡ÊN+£©£¬ÈôbkΪa1£¬a2£¬a3¡­akÖеÄ×î´óÖµ£¬Ôò³ÆÊýÁÐ{bn}ΪÊýÁÐ{an}µÄ¡°Í¹ÖµÊýÁС±£®ÈçÊýÁÐ2£¬1£¬3£¬7£¬5µÄ¡°Í¹ÖµÊýÁС±Îª2£¬2£¬3£¬7£¬7£®Óɴ˶¨Òå¿ÉÖª£¬¡°Í¹ÖµÊýÁС±Îª1£¬3£¬3£¬9£¬9µÄËùÓÐÊýÁÐ{an}¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚ³£ÊýM£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬anÓëan+1ÖÐÖÁÉÙÓÐÒ»¸ö²»Ð¡ÓÚM£¬Ôò¼Ç×÷{an}?M£¬ÄÇôÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÊýÁÐ{an}£¬¶¨ÒåÊýÁÐ{an+1-an}ΪÊýÁÐanµÄ¡°²îÊýÁС±Èôa1=1£¬{an}µÄ¡°²îÊýÁС±µÄͨÏʽΪ3n£¬ÔòÊýÁÐ{an}µÄͨÏʽan=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÊýÁÐ{an}£¬¡°an£¬an+1£¬an+2£¨n=1£¬2£¬3¡­£©³ÉµÈ±ÈÊýÁС±ÊÇ¡°
a
2
n+1
=anan+2
¡±µÄ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸