精英家教网 > 高中数学 > 题目详情
已知圆C:(x-1)2+(y-3)2=16,直线l:(2m+3)x+(m+4)y+2m-2=0.
(1)无论m取任何实数,直线l必经过一个定点,求出这个定点的坐标;
(2)当m取任意实数时,直线l和圆的位置关系有无不变性,试说明理由;
(3)请判断直线l被圆C截得的弦何时最短,并求截得的弦最短时m的值以及弦的长度a.
分析:(1)展开后把含有m的合并在一起,提取m后联立两直线组成的方程组求解定点的坐标;
(2)根据直线过的定点在圆的内部,说明直线和圆的位置关系不变,一定相交;
(3)根据当圆心C和P点的连线垂直于直线l时直线l被圆C截得的弦何时最短求解m的值和弦的长度a.
解答:解(1)直线:l:(2m+3)x+(m+4)y+2m-2=0可变形m(2x+y+2)+(3x+4y-2)=0
2x+y+2=0
3x+4y-2=0
,解得
x=-2
y=2
.因此直线l恒过定点P(-2,2);
(2)因为已知圆的圆心C(1,3),半径r=4,而(-2-1)2+(2-3)2=10<16,
所以直线l过圆C:(x-1)2+(y-3)2=16内一定点P(-2,2),故不论m取何值,直线l和圆总相交;
(3)当直线l垂直于CP时,截得的弦最短,此时,kl•kCP=-1
kCP=
3-2
1+2
=
1
3
kl=-
2m+3
m+4
=-3
,得m=-9.
∴最短弦长为a=2
r2-|CP|2
=2
16-10
=2
6
,所以m=-9,a=2
6
点评:本题考查了直线系方程,考查了直线和圆的位置关系,关键是明确直线l被圆C截得的弦何时最短,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B
(1)当弦AB被点P平分时,写出直线l的方程;
(2)当直线l的倾斜角为45°时,求弦AB的长.
(3)设圆C与x轴交于M、N两点,有一动点Q使∠MQN=45°.试求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB的长为4
2
时,写出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=5,直线l:x-y=0,则C关于l的对称圆C′的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y+1)2=1,那么圆心C到坐标原点O的距离是
2
2

查看答案和解析>>

同步练习册答案