精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),离心率为
2
2
的椭圆经过点(
6
,1).
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线l1,l2分别与椭圆交于A,B和C,D,是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,求出实数λ的值;若不存在,请说明理由.
(1)∵椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,经过点(
6
,1),
∴e=
c
a
=
2
2
?
c2
a2
=
a2-b2
a2
=
1
2
①,
(
6
)
2
a2
+
12
b2
=1②,
由①②解得a2=8,b2=4,
∴该椭圆的标准方程为:
x2
8
+
y2
4
=1;
(2)∵椭圆
x2
8
+
y2
4
=1的左焦点F1(-2,0);
设过其左焦点F1的直线AB的方程为:y=k1(x+2),k1≠0
由方程组
y=k1(x+2)
x2
8
+
y2
4
=1
得(2k12+1)x2+8k12x+8k12-8=0,
设A(x1,y1),B(x2,y2),则x1+x2=
-8k12
2k12+1
,x1•x2=
8k12-8
2k12+1

由弦长公式得|AB|=
1+k12
(x1+x2)2-4x1x2
=
4
2
(k12+1)
2k12+1

同理设C(x3,y3),D(x4,y4),|CD|=
1+k22
(x3+x4)2-4x3x4
=
4
2
(k22+1)
2k22+1
,,
由(1)k1•k2=-1得k2=-
1
k1
,代入得|CD|=
4
2
(k12+1)
k12+2

∵|AB|+|CD|=λ|AB|•|CD|,
∴λ=
|AB|+|CD|
|AB|•|CD|
=
1
|AB|
+
1
|CD|
=
3
4
2
=
3
2
8
,则存在λ=
3
2
8
,使得|AB|+|CD|=λ|AB|•|CD|恒成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

方程
(x-2)2+y2
+
(x+2)2+y2
=10化简结果是(  )
A.
x2
25
+
y2
16
=1
B.
x2
25
+
y2
21
=1
C.
x2
25
+
y2
4
=1
D.
y2
25
+
x2
21
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,O为坐标原点,设过点P(3,
2
)
的直线l,与x轴交于点F(2,0),如果一个椭圆经过点P,且以点F为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在坐标原点,焦点在x轴上,椭圆与x轴的交点到两焦点的距离分别是3和1,则椭圆的标准方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(-3,2)且与
x2
9
+
y2
4
=1有相同焦点的椭圆的方程是(  )
A.
x2
15
+
y2
10
=1
B.
x2
225
+
y2
100
=1
C.
x2
10
+
y2
15
=1
D.
x2
100
+
y2
225
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
m2+12
+
y2
m2-4
=1(m<-2,或m>2)
的焦距是(  )
A.4B.2
2
C.8D.与m有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知θ为斜三角形的一个内角,曲线F:x2sin2θcos2θ+y2sin2θ=cos2θ是(  )
A.焦点在x轴上,离心率为sinθ的双曲线
B.焦点在x轴上,离心率为sinθ的椭圆
C.焦点在y轴上,离心率为|cosθ|的双曲线
D.焦点在y轴上,离心率为|cosθ|的椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m是正实数.若椭圆
x2
m2+16
+
y2
9
=1
的焦距为8,则m=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若M,N是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上关于原点对称的两个点,P是椭圆C上任意一点.若直线PM、PN斜率存在,则它们斜率之积为(  )
A.
a2
b2
B.-
a2
b2
C.
b2
a2
D.-
b2
a2

查看答案和解析>>

同步练习册答案