【题目】已知函数 .
(1)若函数在上是增函数,求正数的取值范围;
(2)当时,设函数的图象与x轴的交点为,,曲线在,两点处的切线斜率分别为,,求证:+ .
科目:高中数学 来源: 题型:
【题目】如图,已知五棱锥P-ABCDE,其中ABE,PCD均为正三角形,四边形BCDE为等腰梯形,BE=2BC=2CD=2DE=4,PB=PE=.
(Ⅰ)求证:平面PCD⊥平面ABCDE;
(Ⅱ)若线段AP上存在一点M,使得三棱锥P-BEM的体积为五棱锥P-ABCDE体积的,求AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,椭圆分别为椭圆的左、右焦点.
(1)当直线过右焦点时,求椭圆的标准方程;
(2)设直线与椭圆交于两点,为坐标原点,且,若点在以线段为直径的圆内,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面,,,,,点在棱上,且.
(Ⅰ)求证:;
(Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=( ).
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店每天(开始营业时)以每件15元的价格购入商品若干(商品在商店的保鲜时间为8小时,该商店的营业时间也恰好为8小时),并开始以每件30元的价格出售,若前6小时内所购进的商品没有售完,则商店对没卖出的商品将以每件10元的价格低价处理完毕(根据经验,2小时内完全能够把商品低价处理完毕,且处理完毕后,当天不再购进商品).该商店统计了100天商品在每天的前6小时内的销售量,由于某种原因销售量频数表中的部分数据被污损而不能看清,制成如下表格(注:视频率为概率).
前6小时内的销售量 (单位:件) | 3 | 4 | 5 |
频数 | 30 |
(1)若某天商店购进商品4件,试求商店该天销售商品获取利润的分布列和期望;
(2)若商店每天在购进4件商品时所获得的平均利润最大,求的取值集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com