精英家教网 > 高中数学 > 题目详情

【题目】已知 =(2,﹣ ), =(sin2 +x),cos2x).令f(x)= ﹣1,x∈R,函数g(x)=f(x+φ),φ∈(0, )的图象关于(﹣ ,0)对称. (Ⅰ) 求f(x)的解析式,并求φ的值;
(Ⅱ)在△ABC中sinC+cosC=1﹣ ,求g(B)的取值范围.

【答案】解:(Ⅰ)∵f(x)= ﹣1= =2 , ∴
∴g(x)的图象的对称中心为
又已知点( )为g(x)的图象的一个对称中心,∴
,∴
(Ⅱ)由



两边平方得

,∴


又∵ ,∴

【解析】(Ⅰ)将函数进行化简,结合三角函数的图象和性质即可求函数f(x)的解析式,进一步求出图象的对称中心,即可得到φ的值;(Ⅱ)由已知条件化简得到sinC的值,求出C= ,又 ,又 ,得到 ,即可求出g(B)的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市有AB两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时.

设在A俱乐部租一块场地开展活动x小时的收费为,在B俱乐部租一块场地开展活动x小时的收费为,试求的解析式;

问该企业选择哪家俱乐部比较合算,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,函数的图象在点处的切线平行于轴.

(1)求的值;

(2)求函数的极小值;

(3)设斜率为的直线与函数的图象交于两点 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:

满意

一般

不满意

A套餐

50%

25%

25%

B套餐

80%

0

20%

C套餐

50%

50%

0

D套餐

40%

20%

40%

(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线上,且与直线相切于点

1)求圆C的方程;

2)是否存在过点的直线与圆C交于两点,且的面积为O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDFE中,四边形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.

(1)若G点是DC的中点,求证:FG∥平面AED.

(2)求证:平面DAF⊥平面BAF.

(3)若AE=AD=1,AB=2,求三棱锥D-AFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)设不等式(x﹣a)(x+a﹣2)<0的解集为N, ,若x∈N是x∈M的必要条件,求a的取值范围.
(2)已知命题:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x个月的利润 (单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x个月的当月利润率 ,例如:
(1)求g(10);
(2)求第x个月的当月利润率g(x);
(3)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的极小值;

(2)若函数个零点,求实数的取值范围;

(3)在(2)的条件下,若函数的三个零点分别为,求证: .

查看答案和解析>>

同步练习册答案