【题目】如图,五面体中,四边形是菱形, 是边长为2的正三角形, , .
(1)证明: ;
(2)若点在平面内的射影,求与平面所成的角的正弦值.
科目:高中数学 来源: 题型:
【题目】某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为的五批疫苗,供全市所辖的三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.
(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;
(2)记三个区选择的疫苗批号的中位数为,求 的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四种说法:
①命题“”为假,则、至少一个为假;
②命题“一次函数都是单调函数”的否定是“一次函数都不是单调函数”;
③动点到点 与到点的距离之和为2,则点的轨迹是焦点在轴上的椭圆;
④命题“若直线与双曲线相切,则该直线与双曲线只有一个公共点”的逆命题是真命题.
其中正确的有__________.(填写序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点Q作斜率不为零的直线交曲线E于点.
(I)求曲线E的方程;
(II)求证: ;
(III)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图椭圆的上下顶点为A、B,直线: ,点P是椭圆上异于点A、B的任意一点,连结AP并延长交直线于点N,连结BP并延长交直线于点M,设AP、BP所在直线的斜率分别为,若椭圆的离心率为,且过点,(1)求的值,并求最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量() |
按分层抽样抽取10只,再随机抽取3只品尝,记为抽到二等品的数量,求抽到二级品的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)用定义证明函数f(x)在(﹣∞,+∞)上为减函数;
(2)若x∈[1,2],求函数f(x)的值域;
(3)若g(x)= ,且当x∈[1,2]时g(x)≥0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的左右焦点,为原点, 在椭圆上,线段与轴的交点满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点作直线交椭圆于两点,交轴于点,若,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com