精英家教网 > 高中数学 > 题目详情

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的非负半轴重合.若曲线的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)求曲线的直角坐标方程与直线的普通方程;

(Ⅱ)设点,直线与曲线交于两点,求的值.

【答案】(Ⅰ);(Ⅱ)9.

【解析】

(Ⅰ)根据极坐标与直角坐标互化公式,即可求解曲线的直角坐标方程,消去参数,即可得到直线的普通方程;

(Ⅱ)题意,把直线l的参数方程可化为 (为参数),代入曲线的直角坐标方程中,利用参数的几何意义,即可求解.

(Ⅰ),得

又由

得曲线C的直角坐标方程为,即

,消去参数t,得直线l的普通方程为.

(Ⅱ)题意直线l的参数方程可化为 (为参数)

代入曲线的直角坐标方程.

由韦达定理,得,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】:实数满足,其中;

:实数满足.

Ⅰ)若,为真,求实数的取值范围;

Ⅱ)若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.

(1)试求椭圆的标准方程;

(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则之积是否为定值?若是,求出该定值;若不是,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若有两个零点,求的范围;

2)若有两个极值点,求的范围;

3)在(2)的条件下,若的两个极值点为 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为 轴,直线轴于点,为椭圆上的动点,的面积最大值为1.

(1)求椭圆的方程;

(2)如图,过点作两条直线与椭圆分别交于,且使轴,问四边形的两条对角线的交点是否为定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实常数kb,使得函数对其公共定义域上的任意实数x都满足:恒成立,则称此直线隔离直线,已知函数(e为自然对数的底数),有下列命题:

内单调递增;

之间存在隔离直线,且b的最小值为

之间存在隔离直线,且k的取值范围是

之间存在唯一的隔离直线

其中真命题的序号为__________.(请填写正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在定义域内某个区间,使得上的值域也是,则称函数在定义域上封闭.如果函数上封闭,那么实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二某班共有20名男生,在一次体验中这20名男生被平均分成两个小组,第一组和第二组男生的身高(单位: )的茎叶图如下:

1)根据茎叶图,分别写出两组学生身高的中位数;

2)从该班身高超过7名男生中随机选出2名男生参加校篮球队集训,求这2名男生至少有1人来自第二组的概率;

3)在两组身高位于(单位: )的男生中各随机选出2人,设这4人中身高位于(单位: )的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大数据时代的到来,人工智能的应用已在各个领域内得到了认可与大力推广,人工智能AI教育也相应在北京、上海等大城市普及、某教育总公司开发了一款专门针对于中小学语数英教学的应用程序,据研究发现,题库总量(单位:万,)与成本(单位:万元)的关系由两部分构成:

①固定成本:总计万元;

②浮动成本:万元.

(1)该公司题库总量为多少时,可使得每题的平均成本费用最低?最低费用为多少?

(2)公司将该软件投放市场寻求加盟合作伙伴,加盟费为万元,加盟人数与题库量满足一次关系,已知当题库量为万时,此时加盟人数为,公司总利润(单位:万元)达到最大值.试求的值.(注:总利润=加盟费-成本).

查看答案和解析>>

同步练习册答案